Skip to main content
Log in

The Role of Silicon in Hot Shortness Amelioration of Steel Containing Copper and Tin

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Hot shortness due to copper and tin in steel is a common industrial problem during the secondary cooling, reheating and hot rolling processes. Silicon is known as a potential element to eliminate hot shortness; however, the effect of single-element silicon on hot shortness and mechanisms involved are not fully understood. The current study aims to determine the Si content needed for a given composition to ameliorate the hot shortness and also to determine the mechanisms. TG, SEM–EDS and XRD were used to study hot shortness behavior of steel containing ~0.3 mass% Cu, ~0.04 mass% Sn and with varying Si-content. It was found that Fe2SiO4 formation at the oxide/steel interface resulting in a reduction of steel oxidation and the enrichment of Cu-rich liquid phase. The mechanisms of silicon eliminating hot shortness were a combination of Fe2SiO4 formation impeding steel oxidation as well as trapping Cu-rich liquid phase into the scale. In the present study, when Si-content is 0.146 mass%, the quantity of Cu-rich liquid phase at the interface was decreased significantly and even no Cu-rich liquid phase was found in the steel with 0.215 mass% Si. Therefore, no less than 0.215 mass% Si was acceptable to alleviate the hot shortness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. G. Garza and C. J. Van Tyne, Journal of Materials Processing Technology 159, 169 (2005).

    Article  Google Scholar 

  2. D. A. Melford, Proceedings of the Royal Irish Acadamy Section A 295, 89 (1980).

    Google Scholar 

  3. J. C. Herman and V. Leroy, Proceedings of 38th mechanical working and steel processing conference Vol. 34 (1996), p. 545.

  4. H. Okamoto, Phase Diagrams for Binary alloys: Desk Handbook, (ASM International, Materials Park, 2000).

    Google Scholar 

  5. J. M. J. Salter, Journal of the Iron and Steel Institute 204, 478 (1966).

    Google Scholar 

  6. T. F. H. Fukagawa, Oxidation of Metals 52, 177 (1999).

    Article  Google Scholar 

  7. B. Webler, L. Yin and S. Sridhar, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 39, 725 (2008).

    Article  Google Scholar 

  8. L. Yin, S. Balaji and S. Sridhar, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 41, 598 (2010).

    Article  Google Scholar 

  9. N. Imai, N. Komatsubara and K. Kunishige, ISIJ International 37, 224 (1997).

    Article  Google Scholar 

  10. N. Imai, N. Komatsubara and K. Kunishige, ISIJ International 37, 217 (1997).

    Article  Google Scholar 

  11. W. Melfo, H. Bolt, M. Rijnders, et al., ISIJ International 53, 866 (2013).

    Article  Google Scholar 

  12. T. Asai, T. Soshiroda and M. Miyahara, ISIJ International 37, 272 (1997).

    Article  Google Scholar 

  13. B. A. Webler and S. Sridhar, ISIJ International 47, 1245 (2007).

    Article  Google Scholar 

  14. K. Kunishige and M. Hatano, Materials Science Forum 539–543, 4113 (2007).

    Article  Google Scholar 

  15. K. Shibata, S. J. Seo, M. Kaga, et al., Materials Transactions 43, 292 (2002).

    Article  Google Scholar 

  16. B. A. Webler and S. Sridhar, Oxidation of Metals 71, 21 (2009).

    Article  Google Scholar 

  17. E. Sampson and S. Sridhar, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 44B, 1124 (2013).

    Article  Google Scholar 

  18. S. Kim and H. Lee, Steel Research International 80, 121 (2009).

    Google Scholar 

  19. L. Yin and S. Sridhar, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 2011, 42 (1031).

    Google Scholar 

  20. L. Himmel, R. F. Mehl and C. E. Birchenall, Transactions of AIME 197, 827 (1953).

    Google Scholar 

  21. D. P. Whittle , The International Conference on High Temperature Corrosion. (San Diego, CA, 1981)

  22. J. Stringer, Corrosion Science 10, 513 (1970).

    Article  Google Scholar 

  23. Y. N. Chang and F. I. Wei, Journal Materials Science 24, 14 (1989).

    Article  Google Scholar 

  24. P. Kofstad, Materials and Corrosion 25, 801 (1974).

    Google Scholar 

  25. R. Dieckmann, British Ceramic Transactions 71, 33 (1996).

    Google Scholar 

  26. D. A. Melford, Tetsu to Hagane 200, 290 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H. The Role of Silicon in Hot Shortness Amelioration of Steel Containing Copper and Tin. Oxid Met 85, 599–610 (2016). https://doi.org/10.1007/s11085-016-9614-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9614-3

Keywords

Navigation