Skip to main content

Advertisement

Log in

The Oxide-Scale Growth and Failure on an Fe–16Cr Alloy in the Presence of Compressive Stress

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high temperature oxidation behavior of an Fe–16Cr binary alloy, oxidized under different compressive stresses in air at 900 °C, was investigated. Surface and cross-sectional micrographs, observed by scanning electron microscopy, indicated that the resulting morphology of the thermally grown oxide scale depended on the compressive stress. Results showed that oxide scales were infact below 5 MPa stress after 10 h of oxidation. Delamination developed at the outer/inner oxide scale interface in the case of compressive stress above 5 MPa. Growth kinetics measurements revealed that the rate of oxide-scale growth increased by the compressive stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Schütze, Materials Science and Technology 4, 1988 (407).

    Article  Google Scholar 

  2. R. Rolls and M. H. Shahhosseini, Oxidation of Metals 18, 1982 (115).

    Article  Google Scholar 

  3. G. Calvarin-Amiri, R. Molins and A. M. Huntz, Oxidation of Metals 54, 2000 (399).

    Article  Google Scholar 

  4. M. F. Stroosnijder, V. Guttmann, R. J. N. Gommans and J. H. W. de Wit, Materials Science and Engineering 121, 1989 (581).

    Article  Google Scholar 

  5. S. R. Pillai, N. S. Barasi and H. S. Khatak, Oxidation of Metals 49, 1998 (509).

    Article  Google Scholar 

  6. J. Robertson and M. I. Manning, Materials Science and Technology 6, 1990 (81).

    Article  Google Scholar 

  7. H. E. Evans, Materials Science and Technology 1988, 1089 (4).

    Google Scholar 

  8. M. M. Nagl and W. T. Evans, Journal of Materials Science 28, 1993 (6247).

    Article  Google Scholar 

  9. S. Leistikow, I. Wolf and H. J. Grabke, Werkstoffe und Korrosion 38, 1987 (556).

    Article  Google Scholar 

  10. Y. Ikeda and K. Nii, Journal of Japan Institute of Metals 47, 1983 (191).

    Google Scholar 

  11. C. H. Zhou, H. T. Ma and L. Wang, Corrosion Science 52, 2010 (210).

    Article  Google Scholar 

  12. C. H. Zhou, H. T. Ma and L. Wang, Oxidation of Metals 70, 2008 (287).

    Article  Google Scholar 

  13. C. H. Zhou, H. T. Ma and L. Wang, Materials and Corrosion 61, 2010 (676).

    Google Scholar 

  14. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, The Netherlands, 2008).

    Google Scholar 

  15. I. R. Sohn and T. Narata, Oxidation of Metals 59, 2003 (353).

    Article  Google Scholar 

  16. T. Amano, A. Hara, N. Sakai and K. Sasaki, Materials at High Temperatures 17, 2000 (117).

    Article  Google Scholar 

  17. E. Park, B. Huning, S. Borodin, M. Rohwerder and M. Spiegel, Materials at High Temperatures 22, 2005 (567).

    Article  Google Scholar 

  18. C. Ostwald and H. J. Grabke, Corrosion Science 46, 2004 (1113).

    Article  Google Scholar 

  19. M. Seo, G. Hultquist, F. Baba and N. Sato, Oxidation of Metals 25, 1986 (163).

    Article  Google Scholar 

  20. I. G. Crouch and J. C. Scully, Oxidation of Metals 15, 1981 (101).

    Article  Google Scholar 

  21. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 57, 2002 (53).

    Article  Google Scholar 

  22. Y. Ikeda and K. Nii, Oxidation of Metals 12, 1978 (487).

    Article  Google Scholar 

  23. W. Christl, A. Rahmel and M. Schütze, Oxidation of Metals 31, 1989 (1).

    Article  Google Scholar 

  24. J. Timoshenko and N. Goodier, Theory of Elasticity, 3rd ed, (McGraw-Hill, New York, 1969).

    Google Scholar 

  25. G. B.Gibbs and R. Hales, in Proceeding of the Conference on Vacancies’76, eds. R. E. Smallman and J. E. Harris (The Metals Society, Bristol, 1977), p. 201.

  26. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier Ltd., Boston, 2008).

    Google Scholar 

  27. H. E. Evans and T. C. Lobb, Corrosion Science 24, 1984 (209).

    Article  Google Scholar 

  28. H. E. Evans, International Materials Reviews 40, 1995 (1).

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by National Natural Science Foundation of China (Nos. 51501058 and 51201062) and Scientific Research Fund of Heilongjing Provincial Education Department (No. 12543069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C.H., Liu, A.L., Ma, H.T. et al. The Oxide-Scale Growth and Failure on an Fe–16Cr Alloy in the Presence of Compressive Stress. Oxid Met 85, 537–546 (2016). https://doi.org/10.1007/s11085-016-9611-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9611-6

Keywords

Navigation