Skip to main content
Log in

Role of Grain Boundaries on the Cyclic Steam Oxidation Behaviour of 18-8 Austenitic Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This work investigated the oxidation behaviour of 18-8 austenitic stainless steel under cyclic steam oxidation condition. The results indicate that grain boundaries not only promote the chromium outward diffusion, but also provide the fast diffusion paths for the oxygen penetration. Thus, oxide inward growth occurs when the chromium content at scale-matrix interface cannot sustain the continuous chromia scale. In addition, the grain boundaries promote the Fe outward diffusion, accompanied with the fast growth of interfacial voids between two oxide layers. As a result, the oxide scale exfoliates once the voids grow to a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Viswanathan, R. Purgert, S. Goodstine, J. Tanzosh, G. Stanko, J. P. Shingledecker, and B. Vitalis, in Proceedings of the 5th International Conference on Advances in Materials Technology for Fossil Power Plants, 2008, pp. #05226G.

  2. T. Otsuka and M. Kaneko, in International Conference on Power Engineering-2007, Hangzhou, China, 2007, pp. 23–27.

  3. R. Viswanathan, K. Coleman and U. Rao, International Journal of Pressure Vessels and Piping 83, 778 (2006).

    Article  Google Scholar 

  4. R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, Journal of Materials Engineering and Performance 14, 281 (2005).

    Article  Google Scholar 

  5. I. G. Wright, P. J. Maziasz, F. V. Ellis, T. B. Gibbons, and D. A. Woodford, in 29th Internal Conference on Coal Utilization and Fuel Systems, 2004.

  6. R. Viswanathan and W. Bakker, Journal of Materials Engineering and Performance 10, 81 (2001).

    Article  Google Scholar 

  7. J. Yan, Y. Gu and J. Lu, Materials Science and Technology 31, 389 (2014) .

    Article  Google Scholar 

  8. B. Prabha, P. Sundaramoorthy, S. Suresh, S. Manimozhi and B. Ravishankar, Journal of Materials Engineering and Performance 18, 1294 (2009).

    Article  Google Scholar 

  9. F. Eberle and C. H. Anderson, Journal of Engineering for Gas Turbines and Power 84, 223 (1962).

    Article  Google Scholar 

  10. The Spalling of Steam-Grown Oxide from S/H and R/H Tube Steels, EPRI Final Report, FP-686, TPS 76-655, February 1978.

  11. T. Ericsson, Oxidation of Metals 2, 173 (1970).

    Article  Google Scholar 

  12. T. Ericsson, Oxidation of Metals 2, 401 (1970).

    Article  Google Scholar 

  13. A. N. Hansson and M. Montgomery, Materials Science Forum 522–523, 181 (2006).

    Article  Google Scholar 

  14. R. Naraparaju, H. J. Christ, F. U. Renner and A. Kostka, Oxidation of Metals 76, 233 (2011).

    Article  Google Scholar 

  15. Y. Zengwu, F. Min, W. Xuegang and L. Xingeng, Oxidation of Metals 77, 17 (2012).

    Article  Google Scholar 

  16. L. Xingeng and H. Jiawen, Materials Letters 60, 339 (2006).

    Article  Google Scholar 

  17. A. F. Smith, M. O. Tucker and R. Hales, Oxidation of Metals 17, 329 (1982).

    Article  Google Scholar 

  18. M. Kowaka and S. Nagata, Journal of the Japan Institute of Metals 36, 486 (1972).

    Google Scholar 

  19. K. Pantleon and M. Montgomery, Metallurgical and Materials Transactions A 43, 1477 (2012).

    Article  Google Scholar 

  20. P. J. Ennis and W. J. Quadakkers, International Journal of Pressure Vessels and Piping 84, 82 (2007).

    Article  Google Scholar 

  21. S. R. J. Saunders and N. L. McCartney, Materials Science Forum 522–523, 119 (2006).

    Article  Google Scholar 

  22. I. G. Wright, A. S. Sabau and R. B. Dooley, Materials Science Forum 595–598, 387 (2008).

    Article  Google Scholar 

  23. K. Yoshikawa, H. Teranishi, K. Tokimasa, H. Fujikawa, M. Miura and K. Kubota, Journal of Materials Engineering 10, 69 (1988).

    Article  Google Scholar 

  24. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 255 (2006).

    Article  Google Scholar 

  25. J. Yan, Y. Gao, L. Liang, Z. Ye, Y. Li, W. Chen and J. Zhang, Corrosion Science 53, 329 (2011).

    Article  Google Scholar 

  26. D. Oquab, N. Xu, D. Monceau and D. J. Young, Corrosion Science 52, 255 (2010).

    Article  Google Scholar 

  27. N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals 32, 13 (1989).

    Article  Google Scholar 

  28. A. Sabau and I. Wright, Oxidation of Metals 73, 467 (2010).

    Article  Google Scholar 

  29. N. Belen, P. Tomaszewicz and D. J. Young, Oxidation of Metals 22, 227 (1984).

    Article  Google Scholar 

  30. H. G. Simms, Oxidation Behaviour of Austenitic Stainless Steels at High Temperature in Supercritical Plant (Master Thesis, School of Metallurgy and Materials Engineering; College of Engineering and Physical Science, The University of Birmingham, 2011).

  31. A. Atkinson, Corrosion Science 22, 87 (1982).

    Article  Google Scholar 

  32. D. R. Gaskell, Introduction to the Thermodynamics of Materials, (Taylor & Francis Books Inc, London, 2003).

    Google Scholar 

  33. W. J. Quadakkers, J. Ehlers, V. Shemet and L. Singheiser, in Materials Aging and Life Management, ed. P. Rodriquez (Kalpakkam, India, 2000).

    Google Scholar 

  34. M. G. C. Cox, B. McEnaney and V. D. Scott, Philosophical Magazine 31, 331 (1975).

    Article  Google Scholar 

  35. S. Jansson, W. Hübner, G. Östberg and M. D. Pourbaix, British Corrosion Journal 4, 21 (1969).

    Article  Google Scholar 

  36. D. Juve-Duc, D. Treheux and P. Guiraldenq, Scripta Metallurgica 12, 1107 (1978).

    Article  Google Scholar 

  37. P. Guiraldenq and P. Poyet, Mem Sci Rev Metall 70, 715 (1973) .

    Google Scholar 

Download references

Acknowledgments

This work was financial supported by State Key Laboratory for Mechanical Behavior of Materials (No. 20141613) and the National Science Foundation of China (No. 51301131)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Gao, Y., Gu, Y. et al. Role of Grain Boundaries on the Cyclic Steam Oxidation Behaviour of 18-8 Austenitic Stainless Steel. Oxid Met 85, 409–424 (2016). https://doi.org/10.1007/s11085-015-9603-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9603-y

Keywords

Navigation