Skip to main content
Log in

Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of treatment time on the microstructure of AISI 304 austenitic stainless steel during liquid nitrocarburizing (LNC) at 703 K (430 °C) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Experimental results revealed that the modified layer was covered with the alloy surface and the modified layer depth increased extensively from 2 to 33.4 μm with increasing treatment time. SEM and XRD showed that when the 304 stainless steel sample was subjected to LNC at 703 K (430 °C) for less than 4 hours, the main phase of the modified layer was expanded austenite. When the treatment time was prolonged to 8 hours, the abundant expanded austenite was formed and it partially transformed into CrN and ferrite subsequently. With the increased treatment time, more and more CrN precipitate transformed in the overwhelming majority zone in the form of a typical dendritic structure in the nearby outer part treated for 40 hours. Still there was a single-phase layer of the expanded austenite between the CrN part and the inner substrate. TEM showed the expanded austenite decomposition into the CrN and ferrite after longtime treatment even at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. GATAN is a trademark of Gatan Inc., Warrendale, Pennsylvania.

References

  1. H. Dong: Int. Mater. Rev., 2010, vol. 55, pp. 65–98.

    Article  Google Scholar 

  2. F. Pedraza, J.L. Grosseau-Poussard, G. Abrasonis, J.P. Rivière, and J.F. Dinhut: Appl. Phys., 2003, vol. 94, pp. 7509–19.

    Article  Google Scholar 

  3. T.L. Christiansen and M.A.J. Somers: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 675–82.

    Article  Google Scholar 

  4. C. Templier, J.C. Stinville, P.O. Renault, G. Abrasonis, P. Villechaise, J.P. Rivière, and M. Drouet: Scripta Mater., 2010, vol. 63, pp. 496–99.

    Article  Google Scholar 

  5. G.M. Michal, X. Gu, W.D. Jennings, H. Kahn, F. Ernst, and A.H. Heuer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1781–90.

    Article  Google Scholar 

  6. F. Ernst, A. Avishai, H. Kahn, X. Gu, G.M. Michal, and A.H. Heuer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1768–80.

    Article  Google Scholar 

  7. T Bell: Surf. Eng., 2002, vol. 18, pp. 415–22.

    Article  Google Scholar 

  8. Liang Wang, Shijun Ji, and Juncai Sun: Surf. Coat. Technol., 2006, vol. 200, pp. 5067–70.

    Article  Google Scholar 

  9. R.B. Frandsen, T. Christiansen, and M.A.J. Somers: Surf. Coat. Technol., 2006, vol. 200, pp. 5160–69.

    Article  Google Scholar 

  10. Jun Wang, Ji Xiong, Qian Peng, Hongyuan Fan, Ying Wang, Guijiang Li, and Baoluo Shen: Mater. Charact., 2009, vol. 60, pp. 197–203.

    Article  Google Scholar 

  11. P. Jacquet, J.B. Coudert, and P. Lourdin: Surf. Coat. Technol., 2011, vol. 205, pp. 4064–67.

    Article  Google Scholar 

  12. Hiroyuki Tsujimura, Takuya Goto, and Yasuhiko Ito: J. Alloys Compd., 2004, vol. 376, pp. 246–50.

    Article  Google Scholar 

  13. D. Manova, T. Höche, S. Mändl, and H. Neumann: Nucl. Instrum. Methods B, 2009, vol. 267, pp. 1536–39.

    Article  Google Scholar 

  14. D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur: Surf. Coat. Technol., 1994, vol. 65, pp. 15–23.

    Article  Google Scholar 

  15. R. Wei, J.J. Vajo, J.N. Matossian, P.J. Wilbur, J.A. Davis, D.L. Williamson, and G.A. Collins: Surf. Coat. Technol., 1996, vol. 83, pp. 235–42.

    Article  Google Scholar 

  16. Yimin Lin, Jian Lu, Liping Wang, Tao Xu, and Qunji Xue: Acta Mater., 2006, vol. 54, pp. 5599–5605.

    Article  Google Scholar 

  17. B. Larisch, U. Brusky, and H.J. Spies: Surf. Coat. Technol., 1999, vols. 116–119, pp. 205–11.

    Article  Google Scholar 

  18. Dong-Cherng Wen: Wear, 2010, vol. 268, pp. 629–36.

    Article  Google Scholar 

  19. H.Y. Li, D.F. Luo, C.F. Yeung, and K.H. Lau: J. Mater. Process. Technol., 1997, vol. 69, pp. 45–49.

    Article  Google Scholar 

  20. J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang: Int. J. Fatigue, 2011, vol. 33, pp. 880–86.

    Article  Google Scholar 

  21. K. Funatani: Met. Sci. Heat Treatment, 2004, vol. 46, pp. 277–80.

    Article  Google Scholar 

  22. G.J. Li, Q. Peng, C. Li, Y. Wang, S. Chen, J. Wang, and B. Shen: Mater. Charact., 2008, vol. 59, pp. 1359–63.

    Article  Google Scholar 

  23. G.J. Li, Q. Peng, J. Wang, C. Li, and B.L. Shen: Surf. Coat. Technol., 2008, vol. 202, pp. 2865–70.

    Article  Google Scholar 

  24. Y.Z. Shen, K.H. Oh, and D.N. Lee: Scripta Mater., 2005, vol. 53, pp. 1345–49.

    Article  Google Scholar 

  25. H. Tsujimura, T. Goto, and Y. Ito: Electrochim. Acta, 2002, vol. 47, pp. 2725–31.

    Article  Google Scholar 

  26. A.S. Hamdy, B. Marx, and D. Butt: Mater. Chem. Phys., 2011, vol. 126, pp. 507–14.

    Article  Google Scholar 

  27. Jun Wang, Yuanhua Lin, Qiang Zhang, Jin Yan, Dezhi Zen, Runbo Huang, and Hongyuan Fan: Surf. Coat. Technol., 2012, vol. 206, pp. 3399–3404.

    Article  Google Scholar 

  28. L. Xia and C. Gao: Nitrid. Steel, 1989, pp. 161–65 (in Chinese).

  29. K.H. Jack: Proc. R. Soc. A, 1951, vol. 208, pp. 200–15.

    Article  Google Scholar 

  30. X. Xu, L. Wang, Z. Yu, J. Qiang, and Z. Hei: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1193–99.

  31. C.E. Foerster, F.C. Serbena, S.L.R. da Silva, C.M. Lepienski, C.J. de M. Siqueira, and M. Ueda: Nucl. Instrum. Methods B, 2007, vol. 257, pp. 732–36.

  32. D.R.G. Mitchell, D.J. Attard, G.A. Collins, and K.T. Short: Surf. Coat. Technol., 2003, vol. 165, pp. 107–18.

    Article  Google Scholar 

  33. X.L. Xu, L. Wang, Z.W. Yu, and Z.K. Hei: Surf. Coat. Technol., 2002, vol. 132, pp. 270–74.

    Article  Google Scholar 

  34. X. Li, M. Samandi, D. Dunne, G. Collins, J. Tendys, K. Short, and R. Hutchings: Surf. Coat. Technol., 1996, vol. 85, pp. 28–36.

    Article  Google Scholar 

  35. J. Feugeas, B. Gomez, and A. Craievich: Surf. Coat. Technol., 2002, vol. 154, pp. 167–75.

    Article  Google Scholar 

  36. D. Hoeft, B.A. Latella, and K.T Short: J. Phys.: Condens. Mater., 2005, vol. 17, pp. 3547–58.

Download references

Acknowledgments

The authors are extremely grateful for the grants from the China Scholarship Council (Grant No. 201206245098) and the Sichuan Province Science and Technology Support Program (Grant No. 2014GZ0004), which provided financial support for this research work. One of the authors (JW) thanks Professor DeFu Luo, XiHua University (Chengdu, Sichuan, China), for the valuable discussions during the course of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Additional information

Manuscript submitted November 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lin, Y., Zhang, Q. et al. Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing. Metall Mater Trans A 45, 4525–4534 (2014). https://doi.org/10.1007/s11661-014-2418-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2418-7

Keywords

Navigation