Skip to main content
Log in

Corrosion of Pure Cr and Ni–30Cr Alloy by Soda–Lime–Silicate Melts: Study of Simplified Systems

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion characteristics of model chromia-forming alloys (i.e. pure Cr and Ni–30 wt%Cr alloy) were studied in molten soda–lime–silicate (i.e. Na2O–CaO–xSiO2, x = 3 or 6, molar composition) at 1100 and 1150 °C using electrochemical techniques coupled with ex situ observations. High Cr activity of pure Cr led to high corrosion rates and also the inability of the material to develop a long term protective oxide scale after a preoxidation treatment. By contrast, the Cr2O3 scale built on preoxidized Ni–30Cr exhibited a protective behavior at 1100 °C. The variation of basicity of the silicate melts showed a minor influence on the corrosion behavior of both materials. An increase in the temperature up to 1150 °C led to higher solubility of Cr2O3, and thus did not allow the growth of a protective oxide scale on Ni–30Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. D. Kaplan, D. Chatain, P. Wynblatt and W. Craig Carter, Journal of Materials Science 45, 5681 (2013).

    Article  Google Scholar 

  2. J. Pech, M. Braccini, A. Mortensen and N. Eustathopoulos, Materials Science and Engineering A 384, 117 (2004).

    Article  Google Scholar 

  3. D. Zhong, E. Mateeva, I. Dahan, J. J. Moore, G. G. W. Mustoe, T. Ohno, J. Disam and S. Thiel, Surface and Coatings Technology 133–134, 8 (2000).

    Article  Google Scholar 

  4. A. Roth, Vacuum Sealing Techniques, (American Institute of Physics, New York, 1997).

    Google Scholar 

  5. J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1849 (2004).

    Article  Google Scholar 

  6. B. Gaillard-Allemand, Etude de la corrosion de matériaux métalliques et céramiques par le verre de confinement des déchets nucléaires fondu, PhD Thesis, Université Henri Poincaré (2001).

  7. D. Lizarazu, P. Steinmetz and J. L. Bermard, Materials Science Forum 251–254, 709 (1997).

    Article  Google Scholar 

  8. D. Lizarazu, P. Steinmetz and J. L. Bermard, Fundamentals of Glass Science and Technology 597, (Glafo, The Glass Research Institute, Vaxjo, 1997).

    Google Scholar 

  9. A. Carton, C. Rapin, R. Podor and P. Berthod, Journal of the Electrochemical Society 153, (3), B121 (2006).

    Article  Google Scholar 

  10. S. Abdelouhab, C. Rapin, R. Podor, P. Berthod and M. Vilasi, Journal of the Electrochemical Society 154, (9), C500 (2007).

    Article  Google Scholar 

  11. J. Di Martino, C. Rapin, P. Berthod, R. Podor and P. Steinmetz, Corrosion Science 46, 1865 (2004).

    Article  Google Scholar 

  12. H. Khedim, R. Podor, P. J. Panteix, C. Rapin and M. Vilasi, Journal of Non-Crystalline Solids 356, 2734 (2010).

    Article  Google Scholar 

  13. H. Khedim, T. K. Abdullah, R. Podor, P. J. Panteix, C. Rapin and M. Vilasi, Journal of the American Ceramic Society 93, (5), 1347 (2010).

    Google Scholar 

  14. FactSage 6.4. www.factsage.com. Accessed July 2014.

  15. T. K. Abdullah, C. Petitjean, P. J. Panteix, C. Rapin, M. Vilasi, H. Zuhailawati, and A. Abdul Rahim, Corrosion Science (2014, submitted).

  16. C. Petitjean, P. J. Panteix, C. Rapin, M. s and R. Podor, Procedia Materials Science 7, 101 (2014).

    Article  Google Scholar 

  17. L. Karmazin, Materials Science and Engineering 54, 247 (1982).

    Article  Google Scholar 

  18. www.thermocalc.com. Accessed July 2014.

  19. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

    Google Scholar 

  20. T. K. Abdullah, Study of the Redox and Acid-Base Properties of Soda–Lime–Silicate Glass: Application to the High Temperature Corrosion of Ni-Based Alloys and Ceramic Materials, PhD Thesis, Université de Lorraine (2013).

  21. J. A. Duffy, Geochimica et Cosmochimica Acta 57, 3961 (1993).

    Article  Google Scholar 

  22. K. P. Lillerund and P. Kofstad, Journal of the Electrochemical Society 127, (11), 2397 (1980).

    Article  Google Scholar 

  23. P. Kofstad and K. P. Lillerund, Journal of the Electrochemical Society 127, (11), 2410 (1980).

    Article  Google Scholar 

  24. T. Hodgkiess, G. C. Wood, D. P. Whittle and B. D. Bastow, Oxidation of Metals 14, (3), 263 (1980).

    Article  Google Scholar 

  25. T. K. Abdullah, C. Petitjean, P. J. Panteix, C. Rapin, M. Vilasi, H. Zuhailawati and A. Abdul Rahim, Materials Chemistry and Physics 142, 572 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to SCMEM (Service Commun de Microscopies Electroniques et de Microanalyses X, Université de Lorraine) for EPMA and SEM analyses, and to N. David for thermodynamical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Panteix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, T.K., Petitjean, C., Panteix, P.J. et al. Corrosion of Pure Cr and Ni–30Cr Alloy by Soda–Lime–Silicate Melts: Study of Simplified Systems. Oxid Met 85, 3–16 (2016). https://doi.org/10.1007/s11085-015-9571-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9571-2

Keywords

Navigation