Skip to main content
Log in

The Reaction Behavior of α-Si3N4 Powder at 1100–1500 °C Under Different Oxidizing Conditions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The reaction behavior of α-Si3N4 powder at 1100–1500 °C for 10 h under different oxidizing conditions was investigated using thermogravimetric analysis. The phase constitution and microstructure were characterized using X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscope and fourier transformation infrared spectroscopy. The results showed that the reaction behavior of α-Si3N4 powder varies depending on temperature and the oxidizing atmosphere. At 1100–1200 °C, water vapor enhanced the reaction due to its specifically inward oxidation. Above 1300 °C, H2O further reacted with SiO2 to form silicon tetrahydroxide, which caused the reaction behavior to follow the paralinear rate law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Otani and M. Hirata, Thin Solid Films 442, 2003 (44).

    Article  Google Scholar 

  2. S. Ogata, N. Hirosaki, C. Kocer and Y. Shibutani, Acta Materialia 52, 2004 (233).

    Article  Google Scholar 

  3. V. Balaji, A. N. Tiwari and R. K. Goyal, Polymer Engineering & Science 51, 2011 (509).

    Article  Google Scholar 

  4. K. Anzai and H. Hashimoto, Journal of Materials Science 12, 1977 (2351).

    Article  Google Scholar 

  5. K. Komeya, American Ceramic Society Bulletin 63, 1984 (1158).

    Google Scholar 

  6. W. A. Sanders and D. W. Mieskowski, American Ceramic Society Bulletin 64, 1985 (304).

    Google Scholar 

  7. L. Chuck, S. M. Goodrich, N. L. Hecht and D. E. McCullum, Ceramic Engineering and Science Proceedings 11, 1990 (1007).

    Article  Google Scholar 

  8. D. S. Fox, E. J. Opila, Q. G. N. Nguyen, D. L. Humphrey and S. M. Lewton, Journal of the American Ceramic Society 86, 2003 (1256).

    Article  Google Scholar 

  9. A. F. Hampton and H. C. Graham, Oxidation of Metals 10, 1976 (239).

    Article  Google Scholar 

  10. T. Suetsuna and T. Ohji, Journal of the American Ceramic Society 88, 2005 (1139).

    Article  Google Scholar 

  11. R. M. Horton, Journal of the American Ceramic Society 52, 1969 (121).

    Article  Google Scholar 

  12. M. Maeda, K. Nakamura and M. Yamada, Journal of Materials Science 25, 1990 (3790).

    Article  Google Scholar 

  13. Y. G. Gogotsi and F. Porz, Corrosion Science 33, 1992 (627).

    Article  Google Scholar 

  14. Z. Zheng, R. E. Tressler and K. E. Spear, Corrosion Science 33, 1992 (569).

    Article  Google Scholar 

  15. G. Blugan, D. Wittig and J. Kuebler, Corrosion Science 51, 2009 (547).

    Article  Google Scholar 

  16. D. Galusková, M. Kašiarová, M. Hnatko, D. Galusek, J. Dusza and P. Šajgalík, Corrosion Science 85, 2014 (94).

    Article  Google Scholar 

  17. E. J. Opila, D. S. Fox and N. S. Jacobson, Journal of the American Ceramic Society 80, 1997 (1009).

    Article  Google Scholar 

  18. N. S. Jacobson, E. J. Opila, D. L. Myers and E. H. Copland, The Journal of Chemical Thermodynamics 37, 2005 (1130).

    Article  Google Scholar 

  19. A. V. Plyasunov, Geochimica et Cosmochimica Acta 75, 2011 (3853).

    Article  Google Scholar 

  20. A. Hashimoto, Geochimica et Cosmochimica Acta 56, 1992 (511).

    Article  Google Scholar 

  21. J. L. Smialek, R. C. Robinson, E. J. Opila, D. S. Fox and N. S. Jacobson, Advanced Composite Materials 8, 1999 (33).

    Article  Google Scholar 

  22. X. M. Hou, K. C. Chou, X. J. Hu and H. L. Zhao, Journal of Alloys and Compounds 459, 2008 (123).

    Article  Google Scholar 

  23. X. M. Hou and K. C. Chou, Corrosion Science 50, 2008 (2367).

    Article  Google Scholar 

  24. C. S. Tedmon, Journal of the Electrochemical Society 69, 1966 (674).

    Google Scholar 

  25. E. J. Opila and N. S. Jacobson, Oxidation of Metals 44, 1995 (527).

    Article  Google Scholar 

  26. E. J. Opila and R. E. Hann, Journal of the American Ceramic Society 80, 1997 (197).

    Article  Google Scholar 

  27. X. M. Hou, Z. Y. Yu, Z. Y. Chen, K. C. Chou and B. J. Zhao, Journal of the American Ceramic Society 96, 2013 (1877).

    Article  Google Scholar 

  28. E. J. Opila, Journal of the American Ceramic Society 77, 1994 (730).

    Article  Google Scholar 

  29. W. S. Liao, C. H. Lin and S. C. Lee, Applied Physics Letters 65, 1994 (2229).

    Article  Google Scholar 

  30. M. Fukushima, Y. Zhou, Y. I. Yoshizawa and K. Hirao, Journal of the European Ceramic Society 28, 2008 (1043).

    Article  Google Scholar 

  31. Z. Hong, L. Cheng, L. Zhang and Y. Wang, Journal of the American Ceramic Society 92, 2009 (193).

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the National Science-technology Support Plan Projects (Grant 2013BAF09B01), National Nature Science Foundation of China (51104012), New Century Excellent Talents in University (NECT-12-0779) and the Fundamental Research Funds for the Central Universities (FRF-TP-14-113A2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E.H., Dong, H., Chen, J.H. et al. The Reaction Behavior of α-Si3N4 Powder at 1100–1500 °C Under Different Oxidizing Conditions. Oxid Met 84, 169–184 (2015). https://doi.org/10.1007/s11085-015-9549-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9549-0

Keywords

Navigation