Skip to main content
Log in

Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The oxidation behavior of nonstoichiometric Ti2AlCx (x = 0.69) powders synthesized by combustion synthesis was investigated in flowing air by means of simultaneous thermal gravimetric analysis-differential thermal analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope/energy dispersive spectroscopy, with an effect of powder size. The oxidation of the fine Ti2AlC powders with the size of about 1 μm starts at 300 °C and completes at 980 °C, while with increasing the powder size around 10 μm the corresponding temperature increases to 400 and 1040 °C, respectively. The oxidation of nonstoichiometric Ti2AlCx (x = 0.69) powders is controlled by surface reaction in 400–600 °C, and mainly diffusion in 600–900 °C, with the corresponding oxidation activation energy of 2.35 eV and 0.12 eV, respectively. In other words, the critical temperature of changing oxidation controlling step is around 600 °C. The oxidation products were mainly rutile-TiO2 and α-Al2O3. The tiny white flocculent particles of α-Al2O3 appeared on the surface of fine Ti2AlC powders and increased with increasing the oxidation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.W. Barsoum: The MN +1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  2. M.W. Barsoum, I.I. Salama, T. Elraghy, J. Golczewski, H.J. Seifert, F. Aldinger, W. Porter, and H. Wang: Thermal and electrical properties of Nb2AlC, (Ti,Nb)2AlC and Ti2AlC. Metall. Mater. Trans. A 33, 2775 (2002).

    Article  Google Scholar 

  3. Y.C. Zhou and X.H. Wang: Deformation of polycrystalline Ti2AlC under compression. Mater. Res. Innovations 5, 87 (2001).

    Article  CAS  Google Scholar 

  4. V. Adamaki, T. Minster, T. Thomas, G. Fourlaris, and C.R. Bowen: Study of the mechanical properties of Ti2AlC after thermal shock. Mater. Sci. Eng., A 667, 9 (2016).

    Article  CAS  Google Scholar 

  5. M. Radovic, M.W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S.R. Kalidindi, and E. Laracurzio: On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K temperature range. Acta Mater. 54, 2757 (2006).

    Article  CAS  Google Scholar 

  6. X.H. Wang and Y. Zhou: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 (2003).

    Article  CAS  Google Scholar 

  7. M.W. Barsoum and M. Radovic: Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 41, 195 (2011).

    Article  CAS  Google Scholar 

  8. W. Jeitschko, H. Nowotny, and F. Benesovsky: Ternary carbide (H-phase). Monatsh. Chem. 94, 672 (1963).

    Article  CAS  Google Scholar 

  9. M.W. Barsoum, D. Brodkin, and T. Elraghy: Layered machinable ceramics for high temperature applications. Scr. Mater. 36, 535 (1997).

    Article  CAS  Google Scholar 

  10. M.W. Barsoum, T. Elraghy, and M.F. Ali: Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 31, 1857 (2000).

    Article  Google Scholar 

  11. Y. Bai, X. He, Y. Li, C. Zhu, and S. Zhang: Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process. J. Mater. Res. 24, 2528 (2009).

    Article  CAS  Google Scholar 

  12. Y. Bai, H. Zhang, X. He, C. Zhu, R. Wang, Y. Sun, G. Chen, and P. Xiao: Growth morphology and microstructural characterization of nonstoichiometric Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. Int. J. Refract. Met. Hard Mater. 45, 58 (2014).

    Article  CAS  Google Scholar 

  13. Y. Bai, X. He, C. Zhu, and G. Chen: Microstructures, electrical, thermal, and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing. J. Am. Ceram. Soc. 95, 358 (2012).

    Article  CAS  Google Scholar 

  14. Y. Bai, X. He, R. Wang, Y. Sun, C. Zhu, S. Wang, and G. Chen: High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. J. Eur. Ceram. Soc. 33, 2435 (2013).

    Article  CAS  Google Scholar 

  15. D.J. Tallman, B. Anasori, and M.W. Barsoum: A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater. Res. Lett. 1, 115 (2013).

    Article  CAS  Google Scholar 

  16. M.W. Barsoum and T. Elraghy: A progress report on Ti3SiC2, Ti3GeC2, and the H-phases, M2BX. J. Mater. Synth. Process. 5, 197 (1997).

    CAS  Google Scholar 

  17. X.H. Wang and Y.C. Zhou: Intermediate-temperature oxidation behavior of Ti2AlC in air. J. Mater. Res. 17, 2974 (2002).

    Article  CAS  Google Scholar 

  18. J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K.B. Park, M.P. Brady, M. Radovic, T. Elraghy, and Y.H. Sohn: Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid. Met. 68, 97 (2007).

    Article  CAS  Google Scholar 

  19. H. Yang, Y.T. Pei, J. Rao, J.T.M. De Hosson, S.B. Li, and G.M. Song: High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scr. Mater. 65, 135 (2011).

    Article  CAS  Google Scholar 

  20. B. Cui, D.D. Jayaseelan, and W.E. Lee: TEM study of the early stages of Ti2AlC oxidation at 900 °C. Scr. Mater. 67, 830 (2012).

    Article  CAS  Google Scholar 

  21. B. Cui, D.D. Jayaseelan, and W.E. Lee: Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics. Acta Mater. 59, 4116 (2011).

    Article  CAS  Google Scholar 

  22. H. Yang, Y.T. Pei, J. Rao, and J.T.M. De Hosson: Self-healing performance of Ti2AlC ceramic. J. Mater. Chem. 22, 8304 (2012).

    Article  CAS  Google Scholar 

  23. S. Basu, N. Obando, A. Gowdy, I. Karaman, and M. Radovic: Long-term oxidation of Ti2AlC in air and water vapor at 1000–1300 °C temperature range. J. Electrochem. Soc. 159, C90–C96 (2012).

    Article  CAS  Google Scholar 

  24. Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai, S.J. Wang, H. Jin, and J.S. Pan: Probing the oxidation behavior of Ti2AlC MAX phase powders between 200 and 1000 °C. J. Eur. Ceram. Soc. 37, 43 (2017).

    Article  Google Scholar 

  25. H.Y. Dong, C.K. Yan, S.Q. Chen, and Y.C. Zhou: Solid–liquid reaction synthesis and thermal stability of Ti2SnC powders. J. Mater. Chem. 11, 1402 (2001).

    Article  CAS  Google Scholar 

  26. Z.J. Lin, M.S. Li, J.Y. Wang, and Y.C. Zhou: High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 55, 6182 (2007).

    Article  CAS  Google Scholar 

  27. S.R. Kulkarni, M. Merlini, N. Phatak, S.K. Saxena, G. Artioli, S. Amini, and M.W. Barsoum: Thermal expansion and stability of Ti2SC in air and inert atmospheres. J. Alloys Compd. 469, 395 (2009).

    Article  CAS  Google Scholar 

  28. X.H. Wang and Y.C. Zhou: Oxidation behavior of Ti3AlC2 powders in flowing air. J. Mater. Chem. 12, 2781 (2002).

    Article  CAS  Google Scholar 

  29. J.L. Smialek: Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. J. Eur. Ceram. Soc. 37, 23 (2017).

    Article  CAS  Google Scholar 

  30. J.L. Smialek: Kinetic aspects of Ti2AlC MAX phase oxidation. Oxid. Met. 83, 351 (2015).

    Article  CAS  Google Scholar 

  31. X.H. Wang and Y.C. Zhou: Stability and selective oxidation of aluminum in nano-laminate Ti3AlC2 upon heating in argon. Chem. Mater. 15, 3716 (2003).

    Article  CAS  Google Scholar 

  32. Y. Bai, X. He, R. Wang, S. Wang, and F. Kong: Effect of transition metal (M) and M-C slabs on equilibrium properties of Al-containing MAX carbides: An ab initio study. Comput. Mater. Sci. 91, 28 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant No. 11302061), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 11421091), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20132302120024), China Postdoctoral Science Foundation funded project (Grant No. 2013M531033), and the Fundamental Research Funds for the Central Universities. Dr. Yuelei Bai gratefully acknowledges the financial support from International Postdoctoral Exchange Fellowship Program (Grant No. 20130004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuelei Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Feng, K., Bai, Y. et al. Oxidation behavior of high-purity nonstoichiometric Ti2AlC powders in flowing air. Journal of Materials Research 32, 2747–2754 (2017). https://doi.org/10.1557/jmr.2017.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.83

Navigation