Skip to main content
Log in

Magnetron Sputtered Mo(Six,Al1−x)2 Oxidation Protection Coatings for Mo–Si–B Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Double layer coatings consisting of a 2 µm thick diffusion barrier and a 5 µm thick oxidation protective topcoat were deposited on Mo–Si–B alloys using magnetron sputtering. During vacuum annealing of the amorphous as-deposited coatings, the tetragonal D8l–Mo5SiB2 phase evolved in the Mo–12Si–21B (at.%) interlayer; in the Mo–48Si–24Al and Mo–71Si–8Al (at.%) topcoats, the C40–Mo(Si,Al)2 and the C11b–MoSi2 phases formed, respectively. The oxidation behavior of the coated samples was investigated at 800 and 1000 °C under cyclic conditions in air. Compared to the bare substrate, the coated samples exhibited significantly reduced mass loss at both temperatures. A scale with a mixture of silica and mullite-like oxides formed on the coatings at 800 °C; in addition, outer aluminum borate needles grew on the Mo–48Si–24Al topcoat. At 1000 °C both coatings formed dense scales of SiO2 and a mullite-like phase, being protective for more than 100 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Tamarin, Protective Coatings for Turbine Blades, (ASM International, The Materials Society, Ohio, 2002).

    Google Scholar 

  2. M. Middlemas and J. Cochran, Journal of the Minerals, Metals and Materials Society 62, 20 (2010). doi:10.1007/s11837-010-0150-3.

    Article  Google Scholar 

  3. J.-C. Zhao and J. H. Westbrook, MRS Bulletin 28, 622 (2003). doi:10.1557/mrs2003.189.

    Article  Google Scholar 

  4. D. M. Berczik, US Patent 5,595,616, 20.01.1997.

  5. M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, Ch Somsen, T. Depka, H. Christ, B. Gorr and S. Burk, Journal of the Minerals, Metals and Materials Society 61, 61 (2009). doi:10.1007/s11837-009-0106-7.

    Article  Google Scholar 

  6. G. Hasemann, I. Bogomol, D. Schliephake, P. I. Loboda and M. Krüger, Intermetallics 48, 28 (2014). doi:10.1016/j.intermet.2013.11.022.

    Article  Google Scholar 

  7. J. Schneibel, P. Tortorelli, R. Ritchie and J. Kruzic, Metallurgical and Materials Transactions A 36, 525 (2005). doi:10.1007/s11661-005-0166-4.

    Article  Google Scholar 

  8. P. Jéhanno, M. Heilmaier and H. Kestler, Intermetallics 12, 1005 (2004). doi:10.1016/j.intermet.2004.03.006.

    Article  Google Scholar 

  9. M. G. Mendiratta, T. A. Parthasarathy and D. M. Dimiduk, Intermetallics 10, 225 (2002). doi:10.1016/s0966-9795(01)00118-2.

    Article  Google Scholar 

  10. T. A. Parthasarathy, M. G. Mendiratta and D. M. Dimiduk, Acta Materialia 50, 1857 (2002). doi:10.1016/s1359-6454(02)00039-3.

    Article  Google Scholar 

  11. S. Paswan, R. Mitra and S. K. Roy, Intermetallics 15, 1217 (2007). doi:10.1016/j.intermet.2007.02.012.

    Article  Google Scholar 

  12. J. Perepezko and R. Sakidja, JOM Journal of the Minerals, Metals and Materials Society 62, 13 (2010). doi:10.1007/s11837-010-0148-x.

    Article  Google Scholar 

  13. F. A. Rioult, S. D. Imhoff, R. Sakidja and J. H. Perepezko, Acta Materialia 57, 4600 (2009). doi:10.1016/j.actamat.2009.06.036.

    Article  Google Scholar 

  14. J. H. Perepezko and R. Sakidja, Advanced Engineering Materials 11, 892 (2009). doi:10.1002/adem.200900118.

    Article  Google Scholar 

  15. R. Sakidja, J. S. Park, J. Hamann and J. H. Perepezko, Scripta Materialia 53, 723 (2005). doi:10.1016/j.scriptamat.2005.05.015.

    Article  Google Scholar 

  16. K. Ito, T. Hayashi, M. Yokobayashi and H. Numakura, Intermetallics 12, 407 (2004). doi:10.1016/j.intermet.2003.12.009.

    Article  Google Scholar 

  17. Z. Tang, A. J. Thom, M. J. Kramer and M. Akinc, Intermetallics 16, 1125 (2008). doi:10.1016/j.intermet.2008.06.014.

    Article  Google Scholar 

  18. R. Sakidja, F. Rioult, J. Werner and J. H. Perepezko, Scripta Materialia 55, 903 (2006). doi:10.1016/j.scriptamat.2006.07.044.

    Article  Google Scholar 

  19. J. S. Park, R. Sakidja and J. H. Perepezko, Scripta Materialia 46, 765 (2002). doi:10.1016/s1359-6462(02)00070-2.

    Article  Google Scholar 

  20. R. Rioult, N. Sekido, R. Sakidja and J. H. Perepezko, Journal of the Electrochemical Society 154, C692 (2007).

    Article  Google Scholar 

  21. R. Mitra and V. V. R. Rao, Materials Science and Engineering: A 260, 146 (1999). doi:10.1016/s0921-5093(98)00972-1.

    Article  Google Scholar 

  22. L. Ingemarsson, K. Hellström, S. Canovic, T. Jonsson, M. Halvarsson, L. G. Johansson and J. E. Svensson, Journal of Materials Science 48, 1511 (2013). doi:10.1007/s10853-012-6906-0.

    Article  Google Scholar 

  23. A. K. Vasudévan and J. J. Petrovic, Materials Science and Engineering A 155, 1 (1992). doi:10.1016/0921-5093(92)90308-N.

    Article  Google Scholar 

  24. M. K. Meyer and A. J. Thom, Journal of the American Ceramic Society 79, 938 (1996).

    Article  Google Scholar 

  25. M. Akinc, M. K. Meyer, M. J. Kramer, A. J. Thom, J. J. Huebsch and B. Cook, Materials Science and Engineering A 261, 16 (1999). doi:10.1016/s0921-5093(98)01045-4.

    Article  Google Scholar 

  26. H. Yokota, T. Kudoh and T. Suzuki, Surface and Coatings Technology 169–170, 171 (2003). doi:10.1016/s0257-8972(03)00221-4.

    Article  Google Scholar 

  27. A. Stergiou, P. Tsakiropoulos and A. Brown, Intermetallics 5, 69 (1997). doi:10.1016/s0966-9795(96)00068-4.

    Article  Google Scholar 

  28. T. Maruyama and K. Yanagihara, Materials Science and Engineering: A 239–240, 828 (1997). doi:10.1016/s0921-5093(97)00673-4.

    Article  Google Scholar 

  29. L. Ingemarsson, M. Halvarsson, J. Engkvist, T. Jonsson, K. Hellström, L. G. Johansson and J. E. Svensson, Intermetallics 18, 633 (2010). doi:10.1016/j.intermet.2009.10.019.

    Article  Google Scholar 

  30. L. Meddar, B. Magnien, M. Clisson, L. Roue and D. Guay, Journal of Materials Science 47, 6792 (2012). doi:10.1007/s10853-012-6623-8.

    Article  Google Scholar 

  31. C. E. Ramberg and W. L. Worrell, Journal of the American Ceramic Society 85, 444 (2002). doi:10.1111/j.1151-2916.2002.tb00109.x.

    Article  Google Scholar 

  32. E. Opila, N. Jacobson, D. Myers and E. Copland, JOM 58, 22 (2006). doi:10.1007/s11837-006-0063-3.

    Article  Google Scholar 

  33. A. Lange, R. Braun and M. Heilmaier, Intermetallics 48, 19 (2014). doi:10.1016/j.intermet.2013.09.007.

    Article  Google Scholar 

  34. J. H. Perepezko and R. Sakidja, Oxidation of Metals 80, 207 (2013). doi:10.1007/s11085-013-9373-3.

    Article  Google Scholar 

  35. S. Kim and J. H. Perepezko, Journal of Phase Equilibria and Diffusion 27, 605 (2006). doi:10.1007/bf02736562.

    Article  Google Scholar 

  36. R. Sakidja, J. H. Perepezko, S. Kim and N. Sekido, Acta Materialia 56, 5223 (2008). doi:10.1016/j.actamat.2008.07.015.

    Article  Google Scholar 

  37. J. H. Fournelle, J. J. Donovan, S. Kim, J. H. Perepezko, Inst. Phys. Conf. Ser. No 165: Symp. 14, 425-427 (2000).

  38. N. Ponweiser, W. Paschinger, A. Ritscher, J. C. Schuster and K. W. Richter, Intermetallics 19, 409 (2011). doi:10.1016/j.intermet.2010.11.010.

    Article  Google Scholar 

  39. T. Tabaru, K. Shobu, M. Sakamoto and S. Hanada, Intermetallics 12, 33 (2004). doi:10.1016/j.intermet.2003.07.002.

    Article  Google Scholar 

  40. J. A. Thornton, Journal of Vacuum Science and Technology 4, 3059 (1986).

    Article  Google Scholar 

  41. J. A. Thornton, Annual Review Materials Science 7, 239 (1977).

    Article  Google Scholar 

  42. A. Gokhale and G. Abbaschian, Journal of Phase Equilibria 12, 493 (1991). doi:10.1007/bf02645979.

    Article  Google Scholar 

  43. C. Guo, C. Li, P. J. Masset and Z. Du, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 36, 100 (2012). doi:10.1016/j.calphad.2011.12.003.

    Article  Google Scholar 

  44. V. Raghavan, Journal of Phase Equilibria and Diffusion 33, 329 (2012). doi:10.1007/s11669-012-0069-1.

    Article  Google Scholar 

  45. P. S. Frankwicz and J. H. Perepezko, Materials Science and Engineering A 246, 199 (1998). doi:10.1016/s0921-5093(97)00747-8.

    Article  Google Scholar 

  46. N. T. Ponweiser, W. Paschinger, A. Ritscher, J. C. Schuster and K. W. Richter, Intermetallics 19, 409 (2011). doi:10.1016/j.intermet.2010.11.010.

    Article  Google Scholar 

  47. D. A. Pankhurst, Physical Review 71, 075114 (2005).

    Article  Google Scholar 

  48. D. A. Pankhurst, D. Nguyen-Manh and D. G. Pettifor, Physical Review B 69, 075113 (2004).

    Article  Google Scholar 

  49. V. Y. Kodash and J. W. Fergus, Journal of the Electrochemical Society 146, 2762 (1999).

    Article  Google Scholar 

  50. T. Tabaru, K. Shobu, H. Hirai and S. Hanada, Intermetallics 11, 721 (2003). doi:10.1016/s0966-9795(03)00072-4.

    Article  Google Scholar 

  51. L. Ingemarsson, K. Hellström, L. G. Johansson, J. E. Svensson and M. Halvarsson, Intermetallics 19, 1319 (2011). doi:10.1016/j.intermet.2011.05.002.

    Article  Google Scholar 

  52. T. Tabaru, J.-H. Kim, K. Shobu, M. Sakamoto, H. Hirai and S. Hanada, Metallurgical and Materials Transactions A 36, 617 (2005). doi:10.1007/s11661-005-0177-1.

    Article  Google Scholar 

  53. A. Lange and R. Braun, Corrosion Science 84, 74 (2014).

    Article  Google Scholar 

  54. A. A. Said, Thermochimica Acta 236, 93 (1994). doi:10.1016/0040-6031(94)80258-0.

    Article  Google Scholar 

  55. H. Lührs, R. X. Fischer and H. Schneider, Materials Research Bulletin 47, 4031 (2012). doi:10.1016/j.materresbull.2012.08.064.

    Article  Google Scholar 

  56. S. H. Hong, W. Cermignani and G. L. Messing, Journal of the European Ceramic Society 16, 133 (1996s). doi:10.1016/0955-2219(95)00144-1.

    Article  Google Scholar 

  57. S.-H. Hong and G. L. Messing, Journal of the American Ceramic Society 80, 1551 (1997). doi:10.1111/j.1151-2916.1997.tb03015.x.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Jörg Brien and Mr. Andreas Handwerk for coating deposition and annealing and appreciate the substrate alloy supply by Plansee SE (Reutte, Austria). The valuable discussions with Prof. Dr. Martin Schmücker (DLR) are thankfully acknowledged. The microprobe analysis performed by Dr. Martin Palm and Mrs. Irina Wossack, Max Planck Institute of Iron Research (Düsseldorf, Germany), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Lange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, A., Braun, R. & Heilmaier, M. Magnetron Sputtered Mo(Six,Al1−x)2 Oxidation Protection Coatings for Mo–Si–B Alloys. Oxid Met 84, 91–104 (2015). https://doi.org/10.1007/s11085-015-9545-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9545-4

Keywords

Navigation