Skip to main content
Log in

Oxygen Permeability Measurements in Ni Using H2/H2O, CO/CO2 and Ni/NiO Rhines Pack Atmospheres

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Water vapour and carbon dioxide are known to accelerate breakaway oxidation of chromium-containing iron and nickel alloys. One proposal is that the presence of hydrogen or carbon promotes internal oxidation of chromium, leading to chromium depletion and breakaway oxidation. This hypothesis was tested by direct measurement of oxygen permeability in the presence of hydrogen and carbon, compared with that in only oxygen, under the same partial pressure of oxygen. Four alloys, Ni–Cr (1, 2, 3.5 and 5 wt%), were oxidised in H2/H2O, CO/CO2, and Ni/NiO Rhines packs at 1,000 and 1,100 °C. The oxygen partial pressures in the mixed gases were equal to that of the Ni/NiO equilibrium. Internal oxidation occurred in all cases, according to parabolic kinetics, indicating a diffusion controlled process. Oxygen permeabilities deduced from Wagner’s diffusion model showed that any variation between the H2/H2O and CO/CO2 reactions is within the range of measurement error (≤10 %). However, oxygen permeability was slightly higher in the Rhines pack environment, a result attributed to the formation of more needle/plate-like internal precipitates. It is concluded that oxygen permeability in nickel is not increased by the presence of hydrogen and/or carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Caplan and M. Cohen, Corrosion 15, 57 (1959).

    Article  Google Scholar 

  2. C. T. Fujii and R. A. Meussner, J. Electrochem. Soc. 110, 1195 (1963) .

    Article  Google Scholar 

  3. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  4. T. Gheno, D. Moneau, J. Zhang and D. J. Young, Corrosion Science 53, 2767 (2011).

    Article  Google Scholar 

  5. T. Nguyen, J. Zhang and D. J. Young, Corrosion Science 76, 231 (2013).

    Article  Google Scholar 

  6. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellan, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxid. Met. 74, 319 (2010).

    Article  Google Scholar 

  7. H. Asteman, J. E. Svensson, M. Norell and L.-G. Johansson, Oxid. Met. 54, 11 (2000).

    Article  Google Scholar 

  8. H. Asteman, J. E. Svensson, M. Norell and L.-G. Johansson, Oxid. Met. 52, 95 (1999).

    Article  Google Scholar 

  9. D. J. Young and B. A. Pint, Oxid. Met. 66, 137 (2006).

    Article  Google Scholar 

  10. J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Mater. Sci. Eng. A 477, 259 (2008).

    Article  Google Scholar 

  11. G. Tveten, G. Hultquist and E. Hornlund, Oxid. Met. 54, 1 (2000).

    Article  Google Scholar 

  12. T. Norby, Advan. Ceram. 3, 99 (1987).

    Google Scholar 

  13. A. Galerie, Y. Wouters and M. Caillet, Mater. Sci. Forum 369–372, 231 (2001).

    Article  Google Scholar 

  14. M. Hansel, W. J. Quadakkers and D. J. Young, Oxid. Met. 59, 285 (2003).

    Article  Google Scholar 

  15. X. G. Zheng and D. J. Young, Oxid. Met. 42, 163 (1994).

    Article  Google Scholar 

  16. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corros. Sci. 48, 3428 (2006).

    Article  Google Scholar 

  17. A. Rahmel and J. Tobolski, Corros. Sci. 5, 333 (1965).

    Article  Google Scholar 

  18. E. Essuman, G. H. Meier, J. Zurek, M. Hansel and W. J. Quadakkers, Oxid. Met. 69, 143 (2008).

    Article  Google Scholar 

  19. N. K. Othman, J. Zhang and D. J. Young, Oxid. Met. 73, 337 (2010).

    Article  Google Scholar 

  20. C. Wagner, Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  21. M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura and T. Maruyama, Materials Transactions 50, 2656 (2009).

    Article  Google Scholar 

  22. A. R. Setiawan, M. H. B. Ani, M. Ueda, K. Kawamura and T. Maruyama, ISIJ International 50, 259 (2010).

    Article  Google Scholar 

  23. D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott and B. D. Bastow, Phil. Mag. A 46, 931 (1982).

    Article  Google Scholar 

  24. G. C. Wood, F. H. Stott, D. P. Whittle, Y. Shida and B. D. Bastow, Corrosion Science 23, 9 (1983).

    Article  Google Scholar 

  25. D. J. Young and O. Ahmed, Mater. Sci. Forum 369–372, 93 (2001).

    Article  Google Scholar 

  26. J. Zhang, M. Safarzadeh and D. J. Young, Oxidation of Metals 70, 15 (2008).

    Article  Google Scholar 

  27. Y. Shida, F. H. Stott, B. D. Bastow, D. P. Whittle and G. C. Wood, Oxidation of Metals 18, 93 (1982).

    Article  Google Scholar 

  28. M. Ueda, Y. Kurata, K. Kawamura, T. Maruyama, http://ma.ecsdl.org/content/MA2012-02/24/2314.full.pdf+html, Abstract #2314, Honolulu PRiME 2012.

Download references

Acknowledgments

Financial support by the Australian Research Council’s Discovery Program is gratefully acknowledged. One of the authors, Dr. Pingyi Guo, would like to thank National Natural Science Foundation of China, Grant No. 51201073 and Jiangsu Government Scholarship for her Overseas Studies Program at UNSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Zhang, J., Young, D.J. et al. Oxygen Permeability Measurements in Ni Using H2/H2O, CO/CO2 and Ni/NiO Rhines Pack Atmospheres. Oxid Met 83, 223–235 (2015). https://doi.org/10.1007/s11085-014-9511-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9511-6

Keywords

Navigation