Skip to main content
Log in

The Mechanism of Phase Transformation in Thermally-Grown FeO Scale Formed on Pure-Fe in Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal phase transformation behavior of thermally grown oxide scale of FeO, which was formed on Fe at 700 °C in air for 16 min, was investigated at 320, 450, 500, 520, and 560 °C in air. The phase transformation of FeO was found to consist of four transformation modes: (1) growth of outer Fe3O4 layer; (2) precipitation of Fe3O4; (3) formation of magnetite seam; and (4) eutectoid decomposition of FeO. The transformation was always completed by the eutectoid decomposition at all temperatures in the present study; however, the proportion of transformation mode (1) and (2) strongly depended on temperature. At higher temperatures growth of the outer Fe3O4 layer initially predominates, but the precipitation of Fe3O4 controls the initial transformation at lower temperature before the eutectoid reaction. The eutectoid reaction was found to be initiated by Fe nucleation from Fe-saturated FeO. Fe saturation in FeO was due to growth and/or precipitation of Fe3O4 and formation of the magnetite seam layer, which acts as a diffusion barrier for Fe inward diffusion into Fe substrate. It was proposed that these transformation modes, growth and/or precipitation of Fe3O4 and magnetite seam formation, are necessary to begin the eutectoid reaction, i.e., completion of FeO scale transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 57, 53–79 (2002).

    Article  Google Scholar 

  2. H. A. Wriedt, Journal of Phase Equilibria and Diffusion 12, 170–200 (1991).

    Article  Google Scholar 

  3. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433–468 (2003).

    Article  Google Scholar 

  4. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 53, 540–560 (2000).

    Google Scholar 

  5. B. Gleeson, S. M. M. Hadavi and D. J. Young, Materials at High Temperatures 17, 311–319 (2000).

    Article  Google Scholar 

  6. N. Otsuka, T. Doi, T. Hidaka, Y. Higashida, Y. Masaki, N. Mizui and M. Sato, ISIJ International 53, 268–293 (2013).

    Article  Google Scholar 

  7. H. Tanei and Y. Kondo, ISIJ International 52, 105–109 (2012).

    Article  Google Scholar 

  8. C. H. Zhou, H. T. Ma, Y. Li and L. Wang, Oxidation of Metals 78, 145–152 (2012).

    Article  Google Scholar 

  9. B. Ilschner and E. Mlitzke, Acta Metallurgica 13, 855–867 (1965).

    Article  Google Scholar 

  10. W. A. Fisher, A. Hoffmann and R. Shimada, Arch. Eisenhüttenwes. 27, 521–529 (1956).

    Google Scholar 

  11. J. Paidassi, Acta Metallurgica 3, 447–451 (1955).

    Article  Google Scholar 

  12. J. Barlow, G. T. F. Jay and K. Sachs, Journal of the Iron and Steel Institute 203, 983–987 (1965).

    Google Scholar 

  13. A. Kobayashi, K. Seto, T. Urabe, K. Yamada and K. Sato, Materials Science Forum 522–523, 409–416 (2006).

    Article  Google Scholar 

  14. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed, (CRC Press, Boca Raton, 1992), p. 269.

    Book  Google Scholar 

  15. N. L. Petterson, W. K. Chen and D. Wolf, Journal of Physics and Chemistry of Solids 41 709–719 (1980).

    Article  Google Scholar 

  16. R. Freer, Journal of Materials Science 15, 803–824 (1980).

    Article  Google Scholar 

  17. J. Baud, A. Ferrier and J. Manenc, Oxidation of Metals 12, 331–342 (1978).

    Article  Google Scholar 

  18. J. Smuts and P. R. De Villiers, Journal of the Iron and Steel Institute 204, 787–792 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenari Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, S., Mizumoto, K., Yoneda, S. et al. The Mechanism of Phase Transformation in Thermally-Grown FeO Scale Formed on Pure-Fe in Air. Oxid Met 81, 357–371 (2014). https://doi.org/10.1007/s11085-013-9442-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9442-7

Keywords

Navigation