Skip to main content
Log in

Non-Isothermal Kinetic Analysis of Oxidation of Pure Aluminum Powder Particles

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Non-isothermal kinetic analysis of oxidation of aluminum powder particles (100–200 μm) was investigated by simultaneous thermogravimetry (TG) and differential thermal analysis under linear temperature programming (ranging from 25 to 1,400 °C) at different heating rates (10, 20 and 30 °C/min). In addition, the rate of oxidation reaction (rate of thermogravimetry; RTG) was obtained by the RTG curves. It was found that the oxidation of aluminum powders took place over several stages and the complete oxidation process did not occur even up to 1,400 °C. Among different stages, the temperature ranging from 1,000 to 1,150 °C was identified as the main stage for oxidation process. Hence, kinetic analysis of non-isothermal was determined to be carried out in this region only. Therefore, non-isothermal kinetic analysis of oxidation of pure aluminum powder particles was performed using isoconversional methods (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Friedman ), Markworth and Coats–Redfern methods. Also, the empirical kinetic triplets [E a , A, and f(α)] have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi and V. A. Babuk, Combustion, Explosion, and Shock Waves 41, 680 (2005).

    Article  Google Scholar 

  2. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi and S. Bellucci, Matter 18, 1991 (2006).

    Google Scholar 

  3. E.W. Price, R.K. Sigman, in Progress in Astronautics and Aeronautics: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, eds V. Yang, T. Brill, and W. Ren, Vol. 185, Chap 2.18 (AIAA Inc., Reston, VA, 2000), pp. 663–687.

  4. H. Dong and S. Zhumei, Combustion and Flame 105, 428 (1996).

    Article  Google Scholar 

  5. J. V. Khaki, M. Panjehpour, Y. Kashiwaya, K. Ishii and M. S. Bafghi, Steel research international 75, 169 (2004).

    Google Scholar 

  6. M. A. Trunov, M. Schoenitz, X. Zhu and E. L. Dreizin, Combustion and Flame 140, 310 (2005).

    Article  Google Scholar 

  7. V. Kolarik, M. M. Juez-Lorenzo and H. Fietzek, Materials Science Forum 696, 290 (2011).

    Article  Google Scholar 

  8. S. Hasani, M. Panjepour and M. Shamanian, Oxidation of Metals 78, 179 (2012).

    Article  Google Scholar 

  9. N. Eisenreich, H. Fietzek, M. M. Juez-Lorenzo, V. Kolarik, A. Koleczko and V. Weiser, On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale. Propellants, Explosives, Pyrotechnics 29, 137 (2004).

    Article  Google Scholar 

  10. E. M. Fryt, Oxidation of Metals 12, 139 (1978).

    Article  Google Scholar 

  11. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

    Google Scholar 

  12. K. Lawless, Reports on Progress in Physics 37, 231 (1974).

    Article  Google Scholar 

  13. P. Kofstad, Acta Chemica Scandinavica 12, 701 (1958).

    Article  Google Scholar 

  14. J. S. Wolf and J. M. Grochowski, in Stress Effect and Oxidation of Metals, ed. J. V. Cathcart (Metall. Soc. AIME, New York, 1975) p. 274.

  15. A. J. Markworth, Metallurgical and Materials Transactions A 8, 2014 (1977).

    Article  Google Scholar 

  16. A. J. Markworth, Metallurgical and Materials Transactions A 10, 377 (1978).

    Article  Google Scholar 

  17. Z. Liu and W. Gao, High Temperature Material Processes 17, 231 (1998).

    Google Scholar 

  18. C. S. Nordahl and G. L. Messing, Thermochimica Acta 318, 187 (1998).

    Article  Google Scholar 

  19. M. Schoenitz, B. Patel, O. Agboh and E. L. Dreizin, Thermochimica Acta 507–508, 115 (2010).

    Article  Google Scholar 

  20. H. Tao, Journal de Physique IV France 12, 105 (2002).

    Article  Google Scholar 

  21. T. A. Roberts, R. L. Burton and H. Krier, Combustion and Flame 92, 125 (1993).

    Article  Google Scholar 

  22. V. I. Kiselev and B. M. Leipinskikh, Kinetics of oxidation of molten aluminum, Report VINITI 542-74, Inst. Metall. Sverdlovsk, USSR (1974) (in Russian).

  23. V. P. Elytin, B. S. Mitin, and V. V. Samotekin, Izvestiya Akademii Nauk SSR, Metally 3, 227 (1971) (in Russian).

    Google Scholar 

  24. M. W. Beckstead, A summary of aluminum combustion, Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”, held in Rhode-Saint-Genèse, Belgium, 27–31 May 2002 (RTO-EN-023, 2002).

  25. A. L. Kuhl and V. M. Boiko, Ignition of Aluminum Particles and Clouds, 41st ICT Conference Karlsruhe, Germany June 29 (2010) pp. 1–11.

  26. R. F. Speyer, Thermal Analysis of Materials, (Marcel Dekker Inc., New York, 1993).

    Google Scholar 

  27. M. Schoenitz, C. M. Chen, X. Zhu, and E. L. Dreizin, in Energetic Materials. Characterization, Modeling and Validation, 40th International Conference of ICT, Karlsruhe, Germany (Vol. 34, 2009) pp. 1–11.

  28. M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C. R. Li, T. B. Tang, B. Roduit, J. Malek and T. Mitsuhashi, Thermochimica Acta 335, 125 (2000).

    Article  Google Scholar 

  29. M. Maciejewski, Thermochimica Acta 335, 145 (2000).

    Article  Google Scholar 

  30. S. Vyazovkin, Thermochimica Acta 335, 155 (2000).

    Article  Google Scholar 

  31. A. K. Burnham, Thermochimica Acta 335, 165 (2000).

    Article  Google Scholar 

  32. B. Roduit, Thermochimica Acta 335, 171 (2000).

    Article  Google Scholar 

  33. H. E. Kissinger, Analytical Chemistry 29, 1702 (1957).

    Article  Google Scholar 

  34. T. Akahira and T. Sunose, Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research Report. Chiba Institute of Technology Sci. Technol. 16, 22 (1969).

    Google Scholar 

  35. J. H. Flynn and L. A. Wall, Polymer Letters 4, 323 (1966).

    Article  Google Scholar 

  36. T. Ozawa, Bulletin of the Chemical Society of Japan 38, 1881 (1965).

    Article  Google Scholar 

  37. H. Friedman, Journal of Polymer Science Part C 6, 183 (1964).

    Article  Google Scholar 

  38. S. Vyazovkin and A. I. Lesnikovich, Thermochimica Acta 165, 273 (1990).

    Article  Google Scholar 

  39. S. Vyazovkin and N. Sbirrazzuoli, Macromolecular Rapid Communications 27, 1515 (2006).

    Article  Google Scholar 

  40. P. Budrugeac, Polymer Degradation and Stability 89, 265 (2005).

    Article  Google Scholar 

  41. A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).

    Article  Google Scholar 

  42. S. Li, J. He, P. H. Yu and M. K. Cheung, Journal of Applied Polymer Science 89, 1530 (2003).

    Article  Google Scholar 

  43. S. Vyazovkin and C. A. Wight, Thermochimica Acta 340–341, 53 (1999).

    Article  Google Scholar 

  44. C. Doyle, Journal of Applied Polymer Science 5, 285 (1961).

    Article  Google Scholar 

  45. P. Budrugeac, E. Segal, L. A. Perez-Maqueda and J. M. Criado, Polymer Degradation and Stability 84, 311 (2004).

    Article  Google Scholar 

  46. P. J. Haines, Principles of Thermal Analysis and Calorimetry, (Royal Society of Chemistry, Cambridge, UK, 2002).

    Book  Google Scholar 

  47. A. Khawam and D. R. Flanagan, Thermochimica Acta 436, 101 (2005).

    Article  Google Scholar 

  48. S. Vyazovkin and C. A. Wight, The Journal of Physical Chemistry A 101, 8279 (1997).

    Article  Google Scholar 

  49. M. Erceg, T. Kovacic and S. Perinovic, Thermochimica Acta 476, 44 (2008).

    Article  Google Scholar 

  50. X. Zhu, M. Schoenitz and E. L. Dreizin, The Journal of Physical Chemistry C 113, 6768 (2009).

    Article  Google Scholar 

  51. J. Bouillard, A. Vignes, O. Dufaud, L. Perrin and D. Thomas, Journal of Hazardous Materials 181, 873 (2010).

    Article  Google Scholar 

  52. P. Budrugeac and E. Segal, The International Journal of Chemical Kinetics 33, 564 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panjepour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasani, S., Panjepour, M. & Shamanian, M. Non-Isothermal Kinetic Analysis of Oxidation of Pure Aluminum Powder Particles. Oxid Met 81, 299–313 (2014). https://doi.org/10.1007/s11085-013-9413-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9413-z

Keywords

Navigation