Skip to main content
Log in

Preparation of Self-Healing α-Al2O3 Films by Low Temperature Thermal Oxidation

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper reports a new approach to lowering the temperature necessary for the preparation of α-Al2O3. Oxidation of Al–Cr alloys, with Cr contents of 18, 23 and 27 %, was performed at temperatures ranging from 620 to 720 °C in air for 100 h. The resulting oxide films were analyzed by SEM, EDS, XRD and XPS. The results showed that α-Al2O3 films were obtained following oxidation of the 18 and 23 wt% Cr alloy samples at 720 °C and that rough surfaces were conducive to the formation of α-Al2O3 such that peened surface samples showed significant α-Al2O3 growth while polished samples showed no oxide by XRD. A 23 wt% Cr sample with a roughened surface exhibited the formation of α-Al2O3 at a temperature of 670 °C. Conversely, only a very thin oxide film was observed on a 27 wt% Cr sample after oxidation at 720 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Aiello, A. Ciampichetti and G. Benamati, Journal of Nuclear Materials 329–333, 1398 (2001).

    Google Scholar 

  2. D. L. Smith, J. Konys, T. Muroga and V. Evitkhin, Journal of Nuclear Materials 307–311, 1314 (2002).

    Article  Google Scholar 

  3. M. Fallqvist, M. Olsson and S. Ruppi, Surface & Coatings Technology 202, 837 (2007).

    Article  Google Scholar 

  4. J. M. Andersson, E. Wallin, U. Helmersson and E. P. Münger, Thin Solid Films 513, 57 (2006).

    Article  Google Scholar 

  5. Z. H. Li, Z. P. Yang, N. X. Qiu and G. M. Yang, Journal of Materials Science 46, 3127 (2011).

    Article  Google Scholar 

  6. Q. Fu, C. B. Cao and H. S. Zhu, Thin Solid Films 348, 99 (1999).

    Article  Google Scholar 

  7. I. Rommerskirchen, B. Eltester and H. J. Grabke, Materials and Corrosion 47, 646 (1996).

    Article  Google Scholar 

  8. H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  Google Scholar 

  9. B. A. Pint, J. L. Moser and P. F. Tortorelli, Journal of Nuclear Materials 367–370, 1150 (2007).

    Article  Google Scholar 

  10. E. Serra, H. Glasbrenner and A. Perujo, Fusion Engineering and Design 41, 149 (1998).

    Article  Google Scholar 

  11. K. Murakami, N. Nishida, K. Osamura and Y. Tomota etc, Acta Materialia 52, 1271 (2004).

    Article  Google Scholar 

  12. H. B. Liu, J. Tao, J. Xu, Z. F. Chen, X. J. Sun and Z. Xu, Journal of Nuclear Materials 378, 134 (2008).

    Article  Google Scholar 

  13. Q. Y. Huang, J. N. Yu, F. R. Wan, J. G. Li and Y. C. Wu, Chinese Journal of Nuclear Science and Engineering 24, 56 (2004).

    Google Scholar 

  14. H. X. Lu and H. W. Sun, Materials Science and Engineering A 406, 19 (2005).

    Article  Google Scholar 

  15. C. S. Oh, G. Tomandl, M. H. Lee and S. C. Choi, Journal of Materials Science 31, 5321 (1996).

    Article  Google Scholar 

  16. U. S. Schulz’s, Patent 5,447, 804 (1995).

    Google Scholar 

  17. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music and J. Alami, Journal of Vacuum Science and Technology A 20, 2134 (2002).

    Article  Google Scholar 

  18. Z. G. Zhang, F. Gesmundo, P. Y. Hou and Y. Niu, Corrosion Science 48, 741 (2006).

    Article  Google Scholar 

  19. E. Airiskallio and E. Nurmi etc, Corrosion Science 52, 3394 (2010).

    Article  Google Scholar 

  20. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  21. V. Demange, J. W. Anderegg and J. Ghanbaja, Applied Surface Science 173, 327 (2001).

    Article  Google Scholar 

  22. H. Lu, D. H. Shen, C. L. Bao and Y. X. Wang, Physica Status Solidi (a) 159, 425 (1997).

    Article  Google Scholar 

  23. S. C. Park and Y. B. Park, Journal of Electronic Materials 37, 1565 (2008).

    Article  Google Scholar 

  24. K. Shimizu, K. Kobayashi, G. E. Thompson and G. C. Wood, Oxidation of Metals 36, 1 (1991).

    Article  Google Scholar 

  25. S. Hasani, M. Panjepour and M. Shamanian, Oxidation of Metals 78, 179 (2012).

    Article  Google Scholar 

  26. C. S. Oh, G. Tomandl, M. H. Lee and S. C. Choi, Journal of Materials Science 31, 5321 (1996).

    Article  Google Scholar 

  27. M. A. Trunov, M. Schnoenitz, X. Y. Zhu and E. L. Dreizin, Combustion and Flame 140, 310 (2005).

    Article  Google Scholar 

  28. I. Levin and D. Brandon, Journal of the American Ceramic Society 81, 1995 (1998).

    Article  Google Scholar 

  29. C. S. Tedmon Jr, Journal of the Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  30. H. J. T. Ellingham, Journal of the Society of Chemical Industry (London) 63, 125 (1944).

    Article  Google Scholar 

  31. W. W. Smeltzer, Journal of the Electrochemical Society 103, 209 (1956).

    Article  Google Scholar 

  32. B. Pujilaksono, T. Jonsson and M. Halvarsson etc, Oxidation of Metals 70, 163 (2008).

    Article  Google Scholar 

  33. S. Uran, B. Veal, M. Grimsditch, J. Pearson and A. Berger, Oxidation of Metals 54, 73 (2000).

    Article  Google Scholar 

  34. Z. G. Zhang, P. Y. Hou, F. Gesmundo and Y. Niu, Applied Surface Science 253, 881 (2006).

    Article  Google Scholar 

  35. H. S. Lee, D. S. Kim, J. S. Jung, Y. S. Pyoun and K. Shin, Corrosion Science 51, 2826 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Open Foundation of Key Laboratory for Science and Technology on Surface Physics and Chemistry, China (Grant No. SPC201101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-ping Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Li, Y., Wu, Jm. et al. Preparation of Self-Healing α-Al2O3 Films by Low Temperature Thermal Oxidation. Oxid Met 81, 253–265 (2014). https://doi.org/10.1007/s11085-013-9411-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9411-1

Keywords

Navigation