Skip to main content
Log in

The Effect of Microstructure on the Type II Hot Corrosion of Ni-Base MCrAlY Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Alloys of compositions (in wt%) Ni–31.5Cr–11.5Al–0.6Y and Ni–20.9Co–19.2Cr–12.5Al–0.5Y–0.4Si–0.3Hf were prepared using three different processing routes and exposed to Type II (700 °C) hot corrosion conditions in order to evaluate the influence of microstructural scale on degradation resistance. The alloys were prepared in bulk form by drop casting (DC) and injection casting (IC), and as a coating by low-pressure plasma spraying (LPPS) on a René N5 superalloy substrate. The resulting microstructures became coarser in the order LPPS < IC < DC for the NiCoCrAlY, and IC < LPPS < DC for the NiCrAlY. The DC and LPPS NiCrAlY displayed very good resistance to Type II hot corrosion; however, rapid Type II attack was observed when the alloy was prepared by the IC process. The LPPS and IC NiCoCrAlY formed more protective scales than the DC NiCoCrAlY, i.e., Type II hot corrosion resistance increased with microstructural refinement. Pre-oxidation of a cast NiCoCrAlY alloy greatly reduced the amount of Type II attack for the exposure times studied. The localized attack of the pre-oxidized specimens was found to initiate at reactive-element-rich regions in the pre-formed scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J. R. Nicholls, MRS Bulletin 9, 659 (2003).

    Article  Google Scholar 

  2. W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100,1318 (2009).

    Article  CAS  Google Scholar 

  3. G. J. Tatlock, T. J. Hurd and J. S. Punni, Platinum Metals Review 31, 26 (1987).

    CAS  Google Scholar 

  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  5. N. S. Bornstein and W. P. Allen, Materials Science Forum 127, 127 (1997).

    Article  Google Scholar 

  6. J. Stringer, Annual Review of Materials Science 7, 477 (1976).

    Article  Google Scholar 

  7. G. J. Janz, Molten Salts Handbook. (Academic Press, New York, 1967).

  8. J. F. G. Conde, and G. C. Wareham, The 2nd Conference on Gas Turbine Materials in a Marine Environment (1974).

  9. D. J. Wortman, R. E. Fryxell, K. L. Luthra and P. A. Bergman, Thin Solid Films 64, 281 (1979).

    Article  CAS  Google Scholar 

  10. K. L. Luthra and D. A. Shores, Journal of the Electrochemical Society 127, 2202 (1980).

    Article  CAS  Google Scholar 

  11. D. J. Wortman, R. E. Fryxell, and I. I. Bessen, The 3rd Conference on Gas Turbine Materials in a Marine Environment (1976).

  12. K. L. Luthra, Metallurgical and Materials Transactions A 13A, 2202 (1982).

    Google Scholar 

  13. J. A. Goebel and F. S. Pettit, Metallurgical and Materials Transactions B 1, 3421 (1970).

    CAS  Google Scholar 

  14. K. T. Chiang, F. S. Pettit, and G. H. Meier, High Temperature Corrosion, (National Society of Corrosion Engineers, Itouston, 1983) p. 519.

  15. M. G. Lawson, F. S. Pettit and J. R. Blachere, Journal of Materials and Research 8, 1993 (1964).

    Article  CAS  Google Scholar 

  16. Materials Preparation Center, Ames Laboratory USDOE, Ames, IA, USA. www.mpc.ameslab.gov. Accessed Dec 2008.

  17. D. R. G. Achar, R. Munoz-Arroyo, L. Singheiser and W. J. Quadakkers, Surface and Coatings Technology 187, 272 (2004).

    Article  CAS  Google Scholar 

  18. R. H. Barkalow and G. W. Goward, High Temperature Corrosion. (National society of Corrosion Engineers, Itouston, 1983) p. 502.

  19. B. Gleeson, in Shreir’s Corrosion. Basic Concepts, High Temperature Corrosion, eds. T. Richardson, et al. (Elsevier, Amsterdam, 2010), p. 180.

    Google Scholar 

  20. J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 125 (1992).

    Article  CAS  Google Scholar 

  21. G. H. Gilmer and H. H. Farrel, J. Appl. Phys. 47, 3792 (1976).

    Article  CAS  Google Scholar 

  22. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, vol. 2, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  23. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 1995 (211).

    Article  CAS  Google Scholar 

  24. E. M. Meier-Jackson, N. M. Yanar, M. C. Maris-Jakubowski, K. Onal-Hance, G. H. Meier and F. S. Pettit, Materials and Corrosion 59, 494 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this work by the Office of Naval Research through Grant No. N00014-10-1-0661 (Dr. David A. Shifler, Technical Monitor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Task.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Task, M.N., Gleeson, B., Pettit, F.S. et al. The Effect of Microstructure on the Type II Hot Corrosion of Ni-Base MCrAlY Alloys. Oxid Met 80, 125–146 (2013). https://doi.org/10.1007/s11085-013-9405-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9405-z

Keywords

Navigation