Skip to main content
Log in

Influence of the Oxygen Partial Pressure on the High Temperature Corrosion of 38Ni–34Fe–25Cr Alloy in Presence of NaCl Deposit

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In biomass gasification processes, some molten salts formed during the process can promite high temperature corrosion. In this study the chromia-forming austenitic alloy Haynes® HR-120 was oxidized with a deposit of sodium chloride for 96 h at 825 and 900 °C. Two different atmospheres were selected; one with a high oxygen partial pressure (Ar/O2 90/10 %vol.) and one, named syngas, with a low oxygen partial pressure (CO/H2/CO2 45/45/10 %vol.). While at 900 °C the behaviour of the alloy in presence of sodium chloride was catastrophic in high oxidizing conditions, the impact of sodium chloride was insignificant in the syngas atmosphere. When exposed to the Ar/O2 mixture, the catastrophic oxidation was attributed to the setting up of an active oxidation. At 900 °C under the syngas atmosphere, the protective behaviour of the alloy seems linked to the association of a faster evaporation of the salt and a very low oxygen partial pressure. At 825 °C a catastrophic behaviour is observed under the syngas atmosphere as the NaCl evaporation rate is much slower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Guttmann, K. Stein and W. T. Bakker, Materials at High Temperatures 14, 127 (1997).

    CAS  Google Scholar 

  2. R. M. Deacon, J. N. DuPont and A. R. Marder, Materials Science and Engineering: A 460, 392 (2007).

    Article  Google Scholar 

  3. M. A. Uusitalo, P. M. J. Vuoristo and T. A. Mantyla, Corrosion Science 46, 1311 (2004).

    Article  CAS  Google Scholar 

  4. A. Klarin, Tappi Journal 76, 183 (1993).

    CAS  Google Scholar 

  5. H. Kassman, M. Broström, M. Berg and L. E. Åmand, Fuel 90, 1325 (2011).

    Article  CAS  Google Scholar 

  6. D. J. Gooch, International Materials Reviews 45, 1 (2000).

    Article  CAS  Google Scholar 

  7. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen and L. L. Baxter, Progress in Energy and Combustion Science 26, 283 (2000).

    Article  CAS  Google Scholar 

  8. X. Meng, W. de Jong, R. Pal and A. H. M. Verkooijen, Fuel Processing Technology 91, 964 (2010).

    Article  CAS  Google Scholar 

  9. S. Chevalier, S. Ched’Homme, A. Bekaddour, K. Amilain-Basset and L. Buisson, Materials and Corrosion 58, 254 (2007).

    Article  CAS  Google Scholar 

  10. A. Zahs, M. Spiegel and H. J. Grabke, Corrosion Science 42, 1093 (2000).

    Article  CAS  Google Scholar 

  11. H. J. Grabke, E. Reese and M. Spiegel, Corrosion Science 37, 1023 (1995).

    Article  CAS  Google Scholar 

  12. F. Ropital and F. Bonnet, Materials Science Forum 595, 681 (2008).

    Article  Google Scholar 

  13. F. Bonnet, F. Ropital, Y. Berthier and P. Marcus, Materials and Corrosion 54, 870 (2003).

    Article  CAS  Google Scholar 

  14. H. J. Grabke, Incinerating municipal and industrial waste, (Hemisphere, New York, 1989), p. 161.

    Google Scholar 

  15. E. Reese and H. J. Grabke, Materials and Corrosion 43, 547 (1992).

    Article  CAS  Google Scholar 

  16. L. Couture, F. Ropital, F. Grosjean, J. Kittel, V. Parry and Y. Wouters, Corrosion Science 55, 133–139 (2012).

    Article  CAS  Google Scholar 

  17. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Antoni, Materials at High Temperatures 22, 105 (2005).

    Article  CAS  Google Scholar 

  18. Y. Shinata, F. Takahashi and K. Hashiura, Materials Science and Engineering: A 87, 399 (1987).

    Article  CAS  Google Scholar 

  19. V. A. C. Haanappel, T. Fransen and P. J. Gellings, Corrosion Science 48, 812 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ropital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couture, L., Ropital, F., Grosjean, F. et al. Influence of the Oxygen Partial Pressure on the High Temperature Corrosion of 38Ni–34Fe–25Cr Alloy in Presence of NaCl Deposit. Oxid Met 80, 577–588 (2013). https://doi.org/10.1007/s11085-013-9397-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9397-8

Keywords

Navigation