Skip to main content
Log in

Chromium Vaporisation from AISI 441 Stainless Steel Oxidised in Humidified Oxygen

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Chromium vaporisation from chromia-forming alloys when exposed to high temperatures can deteriorate the protective property of oxide scale. This problem affects the lifetime of solid oxide fuel cells and solid oxide electrolysers using chromia-forming alloys as interconnectors. In this work, AISI 441, a commercial grade stainless steel which chromium vaporisation investigation has not been reported so far, was chosen for study. Chromium vaporisation rates of bare AISI 441 and AISI 430 and AISI 441 and AISI 430 coated with Mn–Co spinel by electroplating method were measured in an atmosphere of 5 % H2O in O2 over the temperature range of 650–900 °C with the linear velocity of the humidified oxygen stream varied in the range of 0.8–3.0 cm s−1. For uncoated samples, AISI 441 showed a lower chromium vaporisation rate in comparison with that of AISI 430. Mn–Co spinel coating could reduce the chromium vaporisation rate from AISI 430 surface. However, on the contrary, the Mn–Co spinel coating could not only fail to suppress the chromium vaporisation, but it also promoted the chromium vaporisation from AISI 441 surface by 2 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Caplan and M. Cohen, Journal of the Electrochemical Society 108, 438 (1961).

    Article  CAS  Google Scholar 

  2. G. C. Fryburg, R. A. Miller, F. J. Kohl and C. A. Stearns, Journal of the Electrochemical Society 124, 1738 (1977).

    Article  CAS  Google Scholar 

  3. B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993).

    Article  CAS  Google Scholar 

  4. E. J. Opila, D. L. Mayers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf, Journal of Physical Chemistry A 2007, (111), 1971 (2007).

    Article  Google Scholar 

  5. C. Gindorf, L. Singheiser and K. Hilpert, Steel Research International 72, 528 (2001).

    CAS  Google Scholar 

  6. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 115 (2003).

    Article  CAS  Google Scholar 

  7. Z. Yang, K. S. Weil, D. M. Paxton and J. W. Stevenson, Journal of the Electrochemical Society 150, A1188 (2003).

    Article  CAS  Google Scholar 

  8. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus and L. Singheiser, Journal of the Electrochemical Society 154, A295 (2007).

    Article  CAS  Google Scholar 

  9. H. Kurokawa, C. P. Jacobson, L. C. DeJonghe and S. J. Visco, Solid State Ionics 178, 287 (2007).

    Article  CAS  Google Scholar 

  10. X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco and L. C. D. Jonghe, Solid State Ionics 176, 425 (2005).

    Article  CAS  Google Scholar 

  11. Z. Yang, G.-G. Xia, J. W. Stevenson and X.-H. Li, International Journal of Hydrogen Energy 32, 3648 (2007).

    Article  CAS  Google Scholar 

  12. J. Wu, C. D. Johnson, R. S. Gemmen and X. Liu, Journal of Power Sources 189, 1106 (2009).

    Article  CAS  Google Scholar 

  13. Z. H. Bi, J. H. Zhu and J. L. Batey, Journal of Power Sources 195, 3605 (2010).

    Article  CAS  Google Scholar 

  14. S. Chandra-Ambhorn, Y. Wouters, L. Antoni, F. Toscan and A. Galerie, Journal of Power Sources 171, 688 (2007).

    Article  CAS  Google Scholar 

  15. J. Wu, Y. Jiang, C. Johnson and X. Liu, Journal of Power Sources 177, 376 (2008).

    Article  CAS  Google Scholar 

  16. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  CAS  Google Scholar 

  17. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed, (Wiley, New York, 2007).

    Google Scholar 

  18. A. Restovic, E. Ríos, S. Barbato, J. Ortiz and J. L. Gautier, Journal of Electroanalytical Chemistry 522, 141 (2002).

    Article  CAS  Google Scholar 

  19. E. Ríos, H. Reyes, J. Ortiz and J. L. Gautier, Electrochimica Acta 50, 2705 (2005).

    Article  Google Scholar 

  20. T. Brylewski, M. Nanko, T. Maruyama and K. Przybylski, Solid State Ionics 143, 131 (2001).

    Article  CAS  Google Scholar 

  21. H. Kurokawa, K. Kawamura and T. Maruyama, Solid State Ionics 168, 13 (2004).

    Article  CAS  Google Scholar 

  22. P. Jian, L. Jian, H. Bing and G. Xie, Journal of Power Sources 158, 354 (2006).

    Article  CAS  Google Scholar 

  23. S. Chandra-Ambhorn, “Reactivity and Surface Modification of Stainless Steels Used as Electric Interconnectors in High Temperature Solid Oxide Fuel Cells”, Ph.D. Thesis. Institut National Polytechnique de, Grenoble, (2006).

Download references

Acknowledgments

The authors would like to thank SIMaP Laboratory, Grenoble Institute of Technology, Grenoble, France for supplying AISI 441 specimens. This research was sponsored by Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walairat Chandra-ambhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongpromrat, W., Thaikan, H., Chandra-ambhorn, W. et al. Chromium Vaporisation from AISI 441 Stainless Steel Oxidised in Humidified Oxygen. Oxid Met 79, 529–540 (2013). https://doi.org/10.1007/s11085-013-9379-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9379-x

Keywords

Navigation