Skip to main content
Log in

Comparative Behaviour of Specialty Austenitic Stainless Steels in High Temperature Environments

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Two different alloying strategies may be utilised to improve the high temperature performance of austenitic stainless steels: increasing the chromium content, sometimes in combination with a higher nickel level; and alloying with silicon, nitrogen and rare earth metals. The relative merits of the two approaches are explored by comparing the performance of commercial alloys in oxidation tests in air–water vapour, corrosion tests in an oxidising-sulphidising atmosphere and with applied deposits, and creep and fatigue testing. Significant increases in high temperature performance are achieved by selecting specialty heat-resisting austenitic stainless steels, and it will be shown that the choice of grade should be governed by the dominant operative degradation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Pettersson, J. Flyg, K. Göransson, M. Willför: Evaluation of stainless steels for combustion environments. Jernkontoret report TO43-14 (2003).

  2. M Spiegel, H. Asteman, S. Vodel, R. Kull, R. Pettersson, G. Pimenta, I. Azkarate, G. Paradisi, F. Mancia BiowasMaterials for increased performance in sustainable fuel combustion. RFCS report EUR 23868 EN (2009) under contract RFSR-CT-2003-00020.

  3. Å. Martinsson and H. C. M. Andersson-Östling, TMF of Aged 253 MA ® and 353 MA ® , Swerea KIMAB Internal Report KIMAB-2009-504, (Stockholm, Sweden, 2009).

    Google Scholar 

  4. A. Angré and Å. Martinsson, Thermomechanical Fatigue of As-received and Aged AISI 310S High Temperature Stainless Steel, Swerea KIMAB Internal Report KIMAB-2009-129, (Stockholm, Sweden, 2009).

    Google Scholar 

  5. D.L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood. Oxid. Met. 45, Nos. 5/6, (1996).

  6. G. Hultquist, B. Tveten and E. Hörnlund. Influence of Hydrogen in commercial alloys on growth and adherence of oxides. Unpublished results.

  7. G. Hultquist, B. Tveten and E. Hörnlund. Oxid Met. 54, Nos.1/2, (2000).

  8. S. Amy, P. Vangeli proc. EUROCORR 2001: The European Corrosion Congress, Lake Garda, Italy, Sept 30–Oct 4 2001.

  9. H. Asteman, K. Segerdahl, J-E. Svensson and L-G. Johansson. Oxid. Met. 54, Nos. 1/2, (2000) 11.

  10. J. P. T. Vossen, P. Gawenda, K. Rahts, M. Röhrig, M. Schorr and M. Schütze, Mat. High. Temp. 14, 1997 (387–401).

    CAS  Google Scholar 

  11. S. Henry, A. Galerie, L. Antoni. Les Embiez, 2000. Poster.

  12. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxid. Met. 52, 1999 (379).

    Article  CAS  Google Scholar 

  13. P. Vangeli, internal report SE19980198, Investigation of a New Methodology in High Temperature Oxidation. Avesta Sheffield AB. (1998).

  14. EN 10095 Heat Resisting Steels and Nickel Alloys. (1999). 304H: EN 10028-7 Flat Products Made of Steel for Pressure Purposes-Part 7: Stainless steel. (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Sotto Vangeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotto Vangeli, P., Ivarsson, B. & Pettersson, R. Comparative Behaviour of Specialty Austenitic Stainless Steels in High Temperature Environments. Oxid Met 80, 37–47 (2013). https://doi.org/10.1007/s11085-013-9368-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9368-0

Keywords

Navigation