Skip to main content
Log in

A New Kinetics-Based Approach to Quantifying the Extent of Metastable → Stable Phase Transformation in Thermally-Grown Al2O3 Scales

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A novel kinetics analysis method to quantifying the extent of metastable → stable Al2O3 phase-transformation in thermally-grown alumina scales is presented. This analysis involved assessing thermogravimetric data and the time dependence of the associated value of the instantaneous time exponent, n i. It was found that if there is θ → α transformation, the n i-value curve characteristically decreases to a minimum and then increases. The time corresponding to the minimum was defined as a transition time, t tr . It was found that after this t tr , the α phase was significantly established as a continuous layer and the overall scaling kinetics were greatly reduced. Furthermore, using a kinetics scenario for the θ and α co-formation, measured weight-gain kinetics could be well simulated from the initial co-formation stage to the steady-state single-α-phase-growing stage. Finally, it is shown that the transformation kinetics in the lateral direction can also be determined by this kinetics analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. T. Mosely, K. R. Hyde, B. A. Bellany and G. Tappin, Corrosion Science 24, 547 (1984).

    Article  Google Scholar 

  2. I. Levin and D. Brandon, Journal of the American Ceramic Society 81, (8), 1995 (1998).

    Article  CAS  Google Scholar 

  3. A. Andoh, S. Taniguchi and T. Shibata, Materials Science Forum 301, 369 (2001).

    Google Scholar 

  4. J. Dokychak and M. Ruhle, Oxidation of Metals 32, 431 (1989).

    Article  Google Scholar 

  5. K. M. N. Prasanna, A. S. Khanna, Ramesh. Chandra and W. J. Quadakkers, Oxidation of Metals 46, 465 (1996).

    Article  CAS  Google Scholar 

  6. T. F. An, H. R. Guan, X. F. Sun and Z. Q. Hu, Oxidation of Metals 54, 301 (2000).

    Article  CAS  Google Scholar 

  7. P. Burtin, J. P. Brunelle, M. Pijolat and M. Soustelle, Applied Catalysis 34, 225 (1987).

    Article  CAS  Google Scholar 

  8. B. W. Veal, A. P. Paulikas and R. C. Birtcher, Applied Physics Letters 89, 161916 (2006).

    Article  Google Scholar 

  9. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  10. D. M. Lipkin, D. R. Clarke, M. Hollatz, M. Bobeth and W. Pompe, Corrosion Science 39, 231 (1997).

    Article  CAS  Google Scholar 

  11. M. I. F. Macedo, C. A. Bertran and C. C. Osawa, Journal of the Materials Science 42, 2830 (2007).

    Article  CAS  Google Scholar 

  12. D. M. Lipkin, H. Schaffer, F. Adar and D. R. Clarke, Applied Physics Letter 70, 2550 (1997).

    Article  CAS  Google Scholar 

  13. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  CAS  Google Scholar 

  14. X. Peng, D. R. Clarke and F. Wang, Oxidation of Metals 60, 225 (2003).

    Article  CAS  Google Scholar 

  15. B. A. Pint, M. Treska and L. W. Hobbs, Oxidation of Metals 47, 1 (1997).

    Article  CAS  Google Scholar 

  16. B. Kampfe, P. Patzelt and C. G. Nestler, Kristall and Technik 14, 187 (1979).

    Article  Google Scholar 

  17. R. B. Bagwell, G. R. Messing and P. L. Howell, Journal of the. Materials Science 36, 1833 (2001).

    Article  CAS  Google Scholar 

  18. P. Y. Hou, A. P. Paulikasb and B. W. Veal, Materials at High Temperatures 22, (3/4), 535 (2005).

    Article  CAS  Google Scholar 

  19. D. M. Lipkin and H. Schaffer, Applied Physics Letters 70, 2550 (1997).

    Article  CAS  Google Scholar 

  20. W. Zhao, Ph.D Dissertation, University of Pittsburgh, (2012).

  21. B. Pieraggi, Oxidation of Metals 27, 177 (1986).

    Article  Google Scholar 

  22. J. W. Christian, The Theory of Transformations in Metals and Alloys, (Pergamon Press, University of Oxford, Oxford, 1965).

    Google Scholar 

  23. D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38A, 2974 (2007).

    Article  CAS  Google Scholar 

  24. H. Al-Badairy, D. J. Prior and G. J. Tatlock, Materials at High Temperatures 22, 453 (2005).

    Article  CAS  Google Scholar 

  25. The Mathworks Inc., MATLAB (Version R2012b) [Computer program].

Download references

Acknowledgments

This research is supported by the U.S. Office of Naval Research, award N00014-09-1-1127 and managed by Dr. David Shifler. The authors thank Dr. Thomas Gheno for his constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Appendices

Appendix I: MATLAB Code to Calculate Eqs. 9 and 10

Appendix II: MATLAB Code to Fit the Weight-Gain Curve

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Li, Z. & Gleeson, B. A New Kinetics-Based Approach to Quantifying the Extent of Metastable → Stable Phase Transformation in Thermally-Grown Al2O3 Scales. Oxid Met 79, 361–381 (2013). https://doi.org/10.1007/s11085-013-9365-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9365-3

Keywords

Navigation