Skip to main content
Log in

Effects of a Steam Pre-treatment on the Formation and Transformation of Alumina Phases on Fe Aluminide Coatings

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Several researchers have studied the transformation of metastable aluminas (γ- and θ-) to α-Al2O3 but very little is known regarding alumina scales formed under water vapour and their transformation to α-Al2O3. Some results have indicated that water vapour increases the oxidation rate of alumina-scale forming coatings but others have found the opposite, that is, that under water vapour the oxidation rates decrease as either transition aluminas do not form or the transformation to α-Al2O3 is accelerated. In addition, it was found that χ-Al2O3 is the only oxide that forms at the initial stages of oxidation under 100 % steam on Fe–Al coatings at 650 °C. Under these conditions, this oxide is very protective, and slowly transforms onto α-Al2O3. A preliminary study of the transformation of χ- to α-Al2O3 at 900 °C under laboratory air was carried out. χ-Al2O3 was generated by a steam pre-treatment on slurry Fe aluminide coatings deposited on P92.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Burtin, J. P. Brunelle, P. Pijolat, and M. Soustelle, Applied Catalysis 34, 225 (1987).

    Article  CAS  Google Scholar 

  2. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  3. X. Y. Zhang, K. Thaidigsmann, J. Ager, and P. Y. Hou, Journal of Materials Research 6, 1409 (2006).

    Article  CAS  Google Scholar 

  4. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, and S. Ukai, Oxidation of Metals 73, 375 (2010).

    Article  CAS  Google Scholar 

  5. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, and S. Ukai, Oxidation of Metals 75, 41 (2011).

    Article  CAS  Google Scholar 

  6. E. N’Dah, A. Galerie, Y. Wouters, D. Goossens, D. Naumenko, V. Kochubey, and W. J. Quadakkers, Materials and Corrosion 56, 843 (2005).

    Article  Google Scholar 

  7. A. Agüero, K. Spiradek, M. Gutierrez, R. Muelas, and S. Höfinger, Materials Forum 595–598, 251 (2008).

    Article  Google Scholar 

  8. K. Yamada, T. Harato, S. Hamano, and K. Horinouchi, Light Metals, 507 (1984).

  9. B. J. Ingram-Jones, R. C. T. Slade, T. W. Davies, J. C. Southern, and S. Salvador, Journal of Materials Chemistry 6, 73 (1996).

    Article  CAS  Google Scholar 

  10. I. N. Bhattacharya, S. C. Das, P. S. Mukkerjee, S. Paul, and P. K. Mitra, Scandinavian Journal of Metallurgy 211–219, 211 (2004).

    Article  Google Scholar 

  11. B. Whittington and D. Ilievski, Chemical Engineering Journal 98, 89 (2004).

    Article  CAS  Google Scholar 

  12. H. De Souza Santos, T. Wagner Campos, P. De Souza Santos, and P. Kiyohara, Ceramics International 31, 1077 (2005).

    Article  CAS  Google Scholar 

  13. O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, Inorganic Chemistry Communications 6, 930 (2003).

    Article  CAS  Google Scholar 

  14. S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  CAS  Google Scholar 

  15. H. Buscail, S. Heinze, P. H. Dufour, and J. P. Larpin, Oxidation of Metals 47, 445 (1997).

    Article  CAS  Google Scholar 

  16. M. Subanovic, D. Naumenko, M. Kanruddin, G. Meier, L. Singheiser, and W. J. Quadakkers, Corrosion Science 51, 446 (2009).

    Article  CAS  Google Scholar 

  17. C. Kaplan and M. Brochu, Surface and Coatings Technology 205, 4221 (2011).

    Article  Google Scholar 

  18. M. Delmas, MOCVD processed aluminium–platinum coatings for the protection of TI6242 alloy against oxidation at 600 °C, PhD Thesis. Institut National Polytechnique de Toulouse. http://ethesis.inp-toulouse.fr/archive/00000244/. (2005). Accessed June 2010.

  19. S. Chevalier, P. Juzon, K. Przybylski, and J. O. Larpin, Science and Technology of Advanced Materials 10, 1 (2009).

    Article  Google Scholar 

  20. S. Chevalier, P. Juzon, G. Borchardt, A. Galerie, K. Przybylski, and J. P. Larpin, Oxidation of Metals 73, 43 (2010).

    Article  CAS  Google Scholar 

  21. Z. Zhou, H. Guo, M. Abbas, and S. Gong, Corrosion Science 53, 2943 (2011).

    Article  CAS  Google Scholar 

  22. A. Agüero, V. González, M. Gutiérrez, R. Knödler, R. Muelas, and S. Straub, Materials and Corrosion 62, 561 (2011).

    Article  Google Scholar 

  23. A. Agüero, R. Muelas, B. Scarlin, and R. Knoedler, in Materials for Advanced Power Engineering 2002 Part II, Proceeding International Conference, Liege, 1149 (2002).

  24. A. Agüero and K. Spyradek, private communication.

Download references

Acknowledgments

All members of the Area of Metallic Materials are acknowledged in particular, F. Gallego, D. Sayago and M. Almazán for their invaluable contributions in the experimental work and V. González and J. Garcia de Blas for their careful editing and improvement of the paper. The authors wish also to thank MINECO for financial help (ENE2008-06755-C02-01) and Vallourec Mannesmann for supplying P92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Agüero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agüero, A., Hernández, M. & Santaballa, A. Effects of a Steam Pre-treatment on the Formation and Transformation of Alumina Phases on Fe Aluminide Coatings. Oxid Met 79, 601–611 (2013). https://doi.org/10.1007/s11085-012-9351-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9351-1

Keywords

Navigation