Skip to main content
Log in

Grain-Size Effects on the High-Temperature Oxidation of Modified 304 Austenitic Stainless Steel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8–30 μm. Similar Σ3 grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 °C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Viswanathan, J. Sarver and J. M. Tanzosh, Journal of Materials Engineering and Performance 15, 2006 (255).

    Article  CAS  Google Scholar 

  2. F. Abe, M. Tabuci, K. Sawada, S. kuroda, H. Okada and S. Muneki, in Proceedings of EPRI conference on materials and corrosion experience for fossil power plants (South California, USA, 2003).

  3. X. Peng, J. Yan, Y. Zhou and F. Wang, Acta Materialia 53, 2005 (5079).

    Article  CAS  Google Scholar 

  4. Y. Sawaragi, N. Otsuka, H. Senba and S. Yamamoto, The Sumitomo Search 56, 1994 (34).

    CAS  Google Scholar 

  5. I. Hong and C. Koo, Materials Science and Engineering A393, 2005 (213).

    CAS  Google Scholar 

  6. B. M. Gonzalez, C. S. B. Castro, V. T. L. Buono, J. M. C. Vilela, M. S. Andrade, J. M. D. Moraes and M. J. Mantel, Materials Science and Engineering A343, 2003 (51).

    CAS  Google Scholar 

  7. N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel and H. Buscail, Applied Surface Science 254, 2008 (2292).

    Article  CAS  Google Scholar 

  8. S. E. Ziemniak and M. Hanson, Corrosion Science 44, 2002 (2209).

    Article  CAS  Google Scholar 

  9. A. Huntz, A. Reckmann, C. Haut, C. Severac, M. Herbst, F. Resende and A. Sabioni, Materials Science and Engineering A447, 2007 (266).

    CAS  Google Scholar 

  10. H. E. Evans, D. A. Hilton and R. A. Holm, Oxidation of Metals 10, 1976 (149).

    Article  CAS  Google Scholar 

  11. R. C. Lobb, Metal Science 15, 1981 (267).

    CAS  Google Scholar 

  12. I. G. Wright and B. A. Pint, ORNL, CORROSION 2002 (Denver, 2002).

  13. G. C. Wood, Corrosion Science 2, 1962 (173).

    Article  CAS  Google Scholar 

  14. R. Davis, Stainless Steels, ASM Speciality Handbook, (ASM, Materials Park, 1994).

    Google Scholar 

  15. S. C. Tsai, A. M. Huntz and C. Dolin, Materials Science and Engineering A212, 1996 (6).

    CAS  Google Scholar 

  16. C. Ostwald, Corrosion Science 46, 2004 (1113).

    Article  CAS  Google Scholar 

  17. D. Baer and M. Merz, Metallurgical and Materials Transactions A11, 1980 (1973).

    Google Scholar 

  18. A. C. S. Sabioni, A. M. Huntz, F. Silva and F. Jomard, Materials Science and Engineering A392, 2005 (254).

    CAS  Google Scholar 

  19. N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals 32, 1989 (13).

    Article  CAS  Google Scholar 

  20. T. Ericsson, Oxidation of Metals 2, 1970 (401).

    Article  CAS  Google Scholar 

  21. F. Toscan, A. Galerie and P. O. Santacreu, Materials Science Forum 45, 2004 (461–464).

    Google Scholar 

  22. C. Wagner, Journal of Physical Chemistry B21, 1933 (25).

    CAS  Google Scholar 

  23. C. Wagner, Atom Movements, (ASM, Cleveland, 1951), p. 153.

    Google Scholar 

  24. J.-H. Kim, D.-I. Kim, S. Suwas, E. Fleury, K.-W. Yi, in preparation.

Download references

Acknowledgments

This research was supported by by Seoul R&BD Program (Grant No. CS070157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Kim, DI., Suwas, S. et al. Grain-Size Effects on the High-Temperature Oxidation of Modified 304 Austenitic Stainless Steel. Oxid Met 79, 239–247 (2013). https://doi.org/10.1007/s11085-012-9347-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9347-x

Keywords

Navigation