Skip to main content
Log in

Limitations and Advantages of Raman Spectroscopy for the Determination of Oxidation Stresses

  • Review
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Raman spectroscopy has in recent years been used by several research groups to study the stresses that develop in thermally grown oxide layers, particularly Cr2O3, at elevated temperatures between 700 and 900 °C. This paper presents an overview of the Raman technique and describes quantitatively the factors that, in addition to stress, affect the Raman peak shifts, including temperature, non-stoichiometry, impurities, stresses and instrumental calibration. It also summarizes and reviews published work in this area and in doing so, discusses the pros and cons of this technique for oxidation stress measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Stringer, Corrosion Science 10, 513 (1970).

    Article  CAS  Google Scholar 

  2. P. Y. Hou, A. P. Paulikas and B. W. Veal, JOM 61, 51 (2009).

    Article  CAS  Google Scholar 

  3. J. Birnie, C. Craggs, D. J. Gardiner and P. R. Graves, Corrosion Science 33, 1 (1992).

    Article  CAS  Google Scholar 

  4. J. Mougin, N. Rosman, G. Lucazeau and A. Galerie, Journal of Raman Spectroscopy 32, 739 (2001).

    Article  CAS  Google Scholar 

  5. M. Kemdehoundja, J. L. Grosseau-Poussard, J. F. Dinhut and B. Panicaud, Journal of Applied Physics 102, 093513 (2007).

    Article  Google Scholar 

  6. J. Mougin, A. Galerie, M. Dupeux, N. Rosman, G. Lucazeau, A. M. Huntz and L. Antoni, Material Corrosion 53, 486 (2002).

    Article  CAS  Google Scholar 

  7. K. Kitamura, Y. Nishiyama, N. Otsuka and T. Kudo, Materials Science Forum 522–523, 489 (2005).

    Google Scholar 

  8. J. G. Goedjen, J. H. Stout, Q. T. Guo and D. A. Shores, Materials Science and Engineering A 177, 115 (1994).

    Article  CAS  Google Scholar 

  9. A. M. Huntz, S. Daghigh, A. Piant and J. L. Lebrun, Materials Science and Engineering A A248, 44 (1998).

    Article  CAS  Google Scholar 

  10. D. Zhu, J. H. Stout and D. A. Shores, Materials Science Forum 251–2, 333 (1997).

    Article  Google Scholar 

  11. D. Delaunay, A. M. Huntz and P. Lacombe, Corrosion Science 20, 1109 (1980).

    Article  CAS  Google Scholar 

  12. A. P. Paulikas, J. Linton, G. Jennings and B. W. Veal, Growth strains in chromium oxide grown on Fe–Ni–Cr alloys: Test of Rhines–Wolf model of oxide growth. Argonne National Laboratory report, Materials Science/Condensed-Matter Physics, report ID: vealb1.doc, 2003.

  13. A. Norin, Oxidation of Metals 9, 259 (1975).

    Article  CAS  Google Scholar 

  14. S. Gray, K. Berriche-Bouhanek and H. E. Evans, Materials Science Forum 461–464, 755 (2004).

    Article  Google Scholar 

  15. M. Kemdehoundja, J. L. Grosseau-Poussard and J. F. Dinhut, Journal of Applied Physics 105, 063528 (2009).

    Article  Google Scholar 

  16. C. V. Raman and K. S. Krishnan, Nature 121, 711 (1928).

    Article  CAS  Google Scholar 

  17. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  CAS  Google Scholar 

  18. D. Renusch, M. Grimsditch, I. Koshelev, B. W. Veal and P. Y. Hou, Oxidation of Metals 48, 471 (1997).

    Article  CAS  Google Scholar 

  19. J. Mougin, T. Le Bihan and G. Lucazeau G, Journal of Physics and Chemistry of Solids 62, 553 (2001).

    Article  CAS  Google Scholar 

  20. G. Calvarin, A. M. Huntz, A. Hugot Le Goff, S. Joiret and M. C. Bernard, Scripta Materialia 38, 1649 (1998).

    Article  CAS  Google Scholar 

  21. K. F. McCarty and D. R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).

    Article  CAS  Google Scholar 

  22. X. Pang, K. Gao, F. Luo, Y. Emirov, A. A. Levin and A. A. Volinsky, Thin Solid Films 517, 1922 (2009).

    Article  CAS  Google Scholar 

  23. S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Materials at High Temperature 17, 231 (2000).

    Article  CAS  Google Scholar 

  24. P. Y. Hou and J. Stringer, Oxidation of Metals 34, 299 (1990).

    Article  CAS  Google Scholar 

  25. J. Mougin, A. Galerie, G. Lucazeau and L. Abello, Materials Science Forum 369–3, 841 (2001).

    Article  Google Scholar 

  26. A. N. Fitch, C. R. A. Catlow and A. Atkinson, Journal of Materials Science 26, 2300 (1991).

    Article  CAS  Google Scholar 

  27. R. Siab, C. Huvier, M. Kemdehoundja, J. L. Grosseau-Poussard and J. F. Dinhut, Corrosion Science 51, 2246 (2009).

    Article  CAS  Google Scholar 

  28. M. A. Lourenco, D. J. Gardiner, V. Gouvernayre, M. Bowden, J. Hedley and D. Wood, Journal of Material Science Letters 19, 771 (2000).

    Article  CAS  Google Scholar 

  29. V. K. Tolpygo, D. R. Clarke and K. S. Murphy, Metallurgical and Materials Transactions A 32, 1467 (2001).

    Article  Google Scholar 

  30. J. Mougin, PhD Thesis, Institut National Polytechnique de Grenoble, p. 30, 2001.

  31. H. Richter, Z. P. Wang and L. Ley, Solid State Communication 39, 625 (1981).

    Article  CAS  Google Scholar 

  32. J. Zuo, C. Xu, Y. Liu and Y. Qian, Nanostructured Materials 10, 1331 (1998).

    Article  CAS  Google Scholar 

  33. M. Kemdehoundja, J. L. Grosseau-Poussard and J. F. Dinhut, Applied Physics Letters 92, 241924 (2008).

    Article  Google Scholar 

  34. M. Kemdehoundja, J. L. Grosseau-Poussard and J. F. Dinhut, Applied Surface Science 256, 2719 (2010).

    Article  CAS  Google Scholar 

  35. P. Y. Hou and R. M. Cannon, Oxidation of Metals 71, 237 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, P.Y., Ager, J., Mougin, J. et al. Limitations and Advantages of Raman Spectroscopy for the Determination of Oxidation Stresses. Oxid Met 75, 229–245 (2011). https://doi.org/10.1007/s11085-011-9235-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9235-9

Keywords

Navigation