Skip to main content

Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS)

  • Chapter
  • First Online:
Analytical Methods and Instruments for Micro- and Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 23))

  • 485 Accesses

Abstract

This chapter presents the principles and applications of Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) techniques. These methods are other important varieties of using incident photons to study electronic and vibrational properties of materials, in addition to photoluminescence, described in Chap. 2. The discussion in this chapter covers the scientific and technical issues while several experimental examples highlight the significance and applications of each characterization technique in the fields of microelectronics engineering and material science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  2. Landsberg, G., & Mandelstam, L. (1928). Über die Lichtzerstreuung in Kristallen. Zeitschrift Für Physik, 50(11–12), 769–780.

    Article  CAS  Google Scholar 

  3. Schroder, D. K. (2005). Semiconductor material and device characterization (3rd ed). John Wiley & Sons, Inc. ISBN:9780471739067

    Google Scholar 

  4. Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: A practical approach (2nd ed). Wiley & Sons, ISBN 9781119440550.

    Google Scholar 

  5. Chase, B. (1987). Fourier transform Raman spectroscopy. Mikrochimica Acta, 93(1), 81–91.

    Article  Google Scholar 

  6. Schulte, A. (1992). Near-infrared Raman spectroscopy using CCD detection and a semiconductor bandgap filter for Rayleigh line rejection. Applied Spectroscopy, 46(6), 891–893.

    Article  CAS  Google Scholar 

  7. Asselin, K. J., Chase, B. (1994). FT-Raman spectroscopy at 1.339 micrometers. Applied Spectroscopy, 48(6), 699–701.

    Google Scholar 

  8. Renucci, M. A., Renucci, J. B., & Cardona, M. (1971). Light scattering in solids. In M. Balkanski (Ed.), Flammarion sciences (326p).

    Google Scholar 

  9. Brya, W. J. (1973). Raman scattering in Ge–Si alloys. Solid State Communications, 12, 253.

    Article  CAS  Google Scholar 

  10. Cerdeira, F., Pinczuk, A., & Bean, J. C. (1985). Observation of confined electronic states in Si strained-GexSi1-x Si layer superlattices. Physical Review B, 31, 1202.

    Article  CAS  Google Scholar 

  11. Pezzoli, F., Bonera, E., Grilli, E., Guzzi, M., Sanguinetti, S., Chrastina, D., Isella, G., Von Känel, H., Wintersberger, E., Stangl, J., & Bauer, G. (2008). Raman spectroscopy determination of composition and strain in Si1-xGex/Si heterostructures. Materials Science in Semiconductor Processing, 11, 279. https://doi.org/10.1016/j.mssp.2008.09.012

    Article  CAS  Google Scholar 

  12. Perova, T. S., Wasyluk, J., Lyutovich, K., Kasper, E., Oehme, M., Rode, K., & Waldron, A. (2011). Composition and strain in thin Si1−xGex virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction. Journal of Applied Physics, 109, 033502.

    Article  Google Scholar 

  13. Yoshikawa, M., Ishida, H., Ishitani, A., et al. (1990). Study of crystallographic orientations in the diamond film on cubic boron nitride using Raman microprobe. Applied Physics Letters, 57(5), 428–430.

    Article  CAS  Google Scholar 

  14. Yoshikawa, M., Nagai, N. (2006). Vibrational spectroscopy of carbon and silicon materials. In Handbook of vibrational spectroscopy. John Wiley & Sons, Inc. https://doi.org/10.1002/0470027320.s6301

  15. Yoshikawa, M. (2006). Infrared spectroscopy and Raman spectroscopy of semiconductor. In Encyclopedia of analytical chemistry. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470027318.a9652

  16. Wall, M. (2012). Raman spectroscopy optimizes graphene characterization. Advanced Materials and Processes, 170(4), 35–38.

    CAS  Google Scholar 

  17. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 187401.

    Article  CAS  Google Scholar 

  18. Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K. S., Ferrari, A. C., & Harutyuyan, H. (2007). Rayleigh imaging of graphene and graphene layers. Nano Letters, 7(9), 2711–2717.

    Article  CAS  Google Scholar 

  19. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., & Eklund, P. C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters, 6(12), 2667–2673.

    Article  CAS  Google Scholar 

  20. Schroder, D. K., Rubin, L. G. Semiconductor material and device characterization. Wiley. ISBN: 9780471739067.

    Google Scholar 

  21. von Aulock, F. W., Kennedy, B. M., Schipper, C. I., Castro, J. M., Martin, D., Oze, C., Watkins, J. M., Wallace, P. J., Puskar, L., Bégué, F., et al. (2014). Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis. Lithos, 206–207, 52–64. https://doi.org/10.1016/j.lithos.2014.07.017

    Article  CAS  Google Scholar 

  22. Craig, A. P., Franca, A. S., & Oliveira, L. S. (2012). Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chemistry, 132, 1368–1374. https://doi.org/10.1016/j.foodchem.2011.11.121

    Article  CAS  Google Scholar 

  23. Ulrichs, T., Drotleff, A. M., & Ternes, W. (2015). Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chemistry, 172, 909–920. https://doi.org/10.1016/j.foodchem.2014.09.128

    Article  CAS  Google Scholar 

  24. Ren, Y., Li, Y., Wang, J., Wang, X., Liu, B., Zhang, L., & Zhang, L. (2005). Reconstruction of air contaminant concentration distribution in a two-dimensional plane by computed tomography and remote sensing FTIR spectroscopy. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 40, 571–580. https://doi.org/10.1081/ese-200046592

    Article  CAS  Google Scholar 

  25. Basiri, S., Mehdinia, A., & Jabbari, A. (2017). Biologically green synthesized silver nanoparticles as a facile and rapid label-free colorimetric probe for determination of Cu(2+) in water samples. Spectrochima Acta A Molecular and Biomolecular Spectroscopy, 171, 297–304. https://doi.org/10.1016/j.saa.2016.08.032

    Article  CAS  Google Scholar 

  26. Griffith, D. W. T. (1996). Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra. Applied Spectroscopy, 50, 59–70. https://doi.org/10.1366/0003702963906627

    Article  CAS  Google Scholar 

  27. Chen, Y., Furmann, A., Mastalerz, M., & Schimmelmann, A. (2014). Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel, 116, 538–549. https://doi.org/10.1016/j.fuel.2013.08.052

    Article  CAS  Google Scholar 

  28. Delaney, M. F., Warren, F. V., & Hallowell, J. R. (1983). Quantitative-evaluation of library searching performance. Analytical Chemistry, 55, 1925–1929. https://doi.org/10.1021/ac00262a022

    Article  CAS  Google Scholar 

  29. Bacsik, Z., Mink, J., & Keresztury, G. (2004). FTIR spectroscopy of the atmosphere. I. Principles and methods. Applied Spectroscopy Reviews, 39, 295–363. https://doi.org/10.1081/asr-200030192

  30. Tiwald, T. E., Thompson, D. W., & Woollam, J. A. (1998). Optical determination of shallow carrier profiles using Fourier transform infrared ellipsometry. Journal of Vacuum Science and Technology B, 16, 312. https://doi.org/10.1116/1.589802

    Article  CAS  Google Scholar 

  31. Pickering, C., Leong, W. Y., Glaspe, J., Boher, P., & Piel, J.-P. (2002). Non-destructive characterization of doped Si and SiGe epilayers using FTIR spectroscopic ellipsometry (FTIR-SE). Materials Science and Engineering B, 89, 146–150. https://doi.org/10.1016/S0921-5107(01)00821-2

    Article  Google Scholar 

  32. Yu, X. R., & Hantsche, H. (1990). Pressure dependence of the charging effect in monochromatized small spot X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy & Related Phenomena, 50(1), 19–29.

    Article  CAS  Google Scholar 

  33. Drummond, I. W., Cooper, T. A., Street, F. J. (1985) Four classes of selected area XPS (SAXPS): An examination of methodology and comparison with other techniques. Spectrochimica Acta Part B Atomic Spectroscopy, 40(5), 801–810.

    Google Scholar 

  34. Augustin, B., Krishnamurthy, B., Willinger, W. (2009). Internet exchange points (IXPs): Mapped. In Proceedings of the 9th ACM SIGCOMM conference on internet measurement 2009, (ACM 2009) Chicago, Illinois, USA, November 4–6 (2009).

    Google Scholar 

  35. Hantsche, H. (1989). Comparison of basic principles of the surface-specific analytical methods: AES/SAM, ESCA (XPS), SIMS, and ISS with X-ray microanalysis, and some applications in research and industry. Scanning, 11(6), 257–280.

    Article  CAS  Google Scholar 

  36. Moulder, J. F., Stickle, W. F., Sobol, P. E., & Bomben, K. D. (1992). Handbook of x-ray photoelectron spectroscopy. Perkin-Elmer Corp.

    Google Scholar 

  37. Wang, D., He, G., Hao, L., et al. (2019). Comparative passivation effect of ALD-driven HfO2 and Al2O3 buffer layers on the interface chemistry and electrical characteristics of Dy-based gate dielectrics. Journal of Materials Chemistry C, 7.

    Google Scholar 

  38. Mullapudi, G. S. R., Velazquez-Nevarez, G. A., Avila-Avendano, C., et al. (2019). Low-temperature deposition of inorganic-organic HfO2-PMMA hybrid gate dielectric layers for high mobility ZnO thin-film transistors. ACS Applied Electronic Materials.

    Google Scholar 

  39. Vinod, A., Rathore, M. S., Rao, N. S. (2018). Effects of annealing on quality and stoichiometry of HfO2 thin films grown by RF magnetron sputtering. Vacuum, 155, 339–344.

    Google Scholar 

  40. Sublemontier, O., Nicolas, C., Aureau, D., Patanen, M., Kintz, H., Liu, X., Gaveau, M.-A., Le Garrec, J.-L., Robert, E., Barreda, F.-A., Etcheberry, A., Reynaud, C., Mitchell, B., Miron, C. (2014). X-ray photoelectron spectroscopy of isolated nanoparticles. The Journal of Physical Chemistry Letters, 5, 3399−3403. https://doi.org/10.1021/jz501532c

  41. Kim, S., Kim, M. C., Choi, S. H., Kim, K. J., Hwang, H. N., & Hwang, C. C. (2007). Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces. Applied Physics Letters, 91, 103113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry H. Radamson .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radamson, H.H. (2023). Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS). In: Analytical Methods and Instruments for Micro- and Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-031-26434-4_3

Download citation

Publish with us

Policies and ethics