Skip to main content
Log in

Corrosion of Cr2AlC in Ar/1%SO2 Gas Between 900 and 1200 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Cr2AlC compounds were synthesized by a powder metallurgical route and corrosion tested at 900, 1000, 1100 and 1200 °C for up to 150 h under an Ar/1% SO2 gas atmosphere. The compounds were resistant to corrosion because a thin α-Al2O3 barrier layer quickly formed on the surface which suppressed sulfidation. Virtually no sulfur was detected inside the scale except during the initial corrosion stage. The superior corrosion resistance of Cr2AlC originated from the high affinity of Al for oxygen to form the thermodynamically stable Al2O3. Unlike Al, Cr was not active because Cr was strongly bound to carbon as Cr2C layers in Cr2AlC. The small amount of Cr2O3 that had formed was dissolved in the Al2O3 layer. The corrosion of Cr2AlC resulted in the formation of an α-Al2O3 layer and an underlying Cr7C3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. W. Barsoum, Progress in Solid State Chemistry 28, 201 (2000).

    Article  CAS  Google Scholar 

  2. Z. Lin, Y. Zhou, M. Li, and J. Wang, Zeitschrift für Metallkunde 96, 291 (2005).

    CAS  Google Scholar 

  3. Z. J. Lin, M. S. Li, J. Y. Wang, and Y. C. Zhou, Acta Materialia 55, 6182 (2007).

    Article  CAS  Google Scholar 

  4. W. Tian, P. Wang, Y. Kan, and G. Zhang, Journal of Materials Science 43, 2785 (2008).

    Article  CAS  Google Scholar 

  5. D. B. Lee, T. D. Nguyen, J. H. Han, and S. W. Park, Corrosion Science 49, 3926 (2007).

    Article  CAS  Google Scholar 

  6. D. B. Lee and S. W. Park, Oxidation of Metals 68, 211 (2007).

    Article  CAS  Google Scholar 

  7. Z. J. Lin, M. S. Li, J. Y. Wang, and Y. C. Zhou, Acta Materialia 55, 6182 (2007).

    Article  CAS  Google Scholar 

  8. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  9. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature of Metals, 2nd edn. (Cambridge University Press, UK, 2006), p. 124.

    Google Scholar 

  10. R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  CAS  Google Scholar 

  11. I. Milošev, H.-H. Strehblow, and B. Navinšek, Surface and Coatings Technology 74–75, 897 (1995).

    Article  Google Scholar 

  12. P. A. van Manen, E. W. A. Young, D. Schalkoord, C. J. van Der, J. H. W. Wekken, and de Wit, Surface and Interface Analysis 12, 391 (1988).

    Article  Google Scholar 

  13. S. Chevalier, Developments in High Temperature Corrosion and Protection of Materials (Woodhead Publishing Ltd., Cambridge, UK, 2008), p. 290.

  14. J. M. Schneider, Z. Sun, R. Mertens, F. Uestel, and R. Ahuja, Solid State Communications 130, 445 (2004).

    Article  CAS  Google Scholar 

  15. B. Xiao, J. D. Xing, J. Feng, Y. F. Li, C. T. Zhou, W. Su, X. J. Xie, and Y. H. Chen, Physica B 403, 2273 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by Samsung Research Fund, Sungkyunkwan University, Korea, 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.B., Nguyen, T.D. & Park, S.W. Corrosion of Cr2AlC in Ar/1%SO2 Gas Between 900 and 1200 °C. Oxid Met 75, 313–323 (2011). https://doi.org/10.1007/s11085-011-9233-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9233-y

Keywords

Navigation