Skip to main content
Log in

Rapid Formation of α-Al2O3 Scale on an Fe–Al Alloy by Pure-Metal Coatings at 900 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Rapid formation of an α-Al2O3 scale on Fe–50 at.%Al by pure metal thin coatings of Ni, Al, Ti, Cr or Fe was investigated, and the effects of those elements on Al2O3-scale evolution were assessed. The oxidation behavior of samples with and without coatings could be divided into two groups: the samples with/without Ni and Al, and those with Ti, Cr and Fe. The mass gains of samples coated with Al and Ni were almost the same as that of non-coated Fe–50 at.%Al alloy. The mass gains of samples coated with Ti, Cr, and Fe were much lower than that of the Fe–50 at.%Al alloy. A stable α-Al2O3 scale was found to develop from the beginning of oxidation on the samples coated with Ti, Cr and Fe. However metastable θ-Al2O3 remained after long-time oxidation of non-coated and Ni- and Al-coated samples. The direct α-Al2O3 scale formation on the samples with Cr or Fe coatings was speculated to be due to sympathetic nucleation of α-Al2O3 on the surface of Al-supersaturated Fe2O3 for Fe-coated sample, and composition changes from (Cr,Al)2O3 to (Al,Cr)2O3 for the Cr-coated sample. Initial formation of an oxide having a corundum structure was inferred to provide a nucleation site for precipitation of α-Al2O3 without prior formation of a metastable Al2O3 scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. F. An, H. R. Guan, X. F. Sun, and Z. Q. Hu, Oxidation of Metal 54, 301 (2000).

    Article  CAS  Google Scholar 

  2. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  3. J. L. Smialek, J. Doychak, and D. J. Gaydosh, Oxidation of Metals 34, 259 (1990).

    Article  CAS  Google Scholar 

  4. H. J. Grabke, Intermetallics 7, 115 (1999).

    Article  Google Scholar 

  5. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  6. M. W. Brumm and H. J. Grabke, Corrosion Science 34, 547 (1993).

    Article  CAS  Google Scholar 

  7. M. W. Brumm, H. J. Grabke, and B. Wagemann, Corrosion Science 36, 37 (1994).

    Article  CAS  Google Scholar 

  8. H. J. Grabke and G. H. Meier, Oxidation of Metals 44, 147 (1995).

    Article  CAS  Google Scholar 

  9. H. J. Grabke, D. Wiemer, and H. Viefhaus, Applied Surface Science 47, 243 (1997).

    Article  Google Scholar 

  10. H. J. Grabke, W. M. Brumm, and B. Wagemann, Materials and Corrosion 47, 675 (1996).

    Article  CAS  Google Scholar 

  11. C. Houngniou, S. Chevalier, and J. P. Larpin, Oxidation of Metals 65, 409 (2006).

    Article  CAS  Google Scholar 

  12. H. Asteman and M. Spiegel, Corrosion Science 50, 1734 (2008).

    Article  CAS  Google Scholar 

  13. W. C. Hagel, Corrosion 21, 316 (1965).

    CAS  Google Scholar 

  14. F. A. Golightly, G. C. Wood, and F. H. Stott, Oxidation of Metals 14, 217 (1980).

    Article  CAS  Google Scholar 

  15. H. E. Kadiri, R. Molins, Y. Bienvenu, and M. F. Horstemeyer, Oxidation of Metals 64, 63 (2005).

    Article  Google Scholar 

  16. F. Liu, H. Gotlind, J. E. Svensson, L. G. Johansson, and M. Halvarsson, Corrosion Science 50, 2272 (2008).

    Article  CAS  Google Scholar 

  17. H. Josefsson, F. Liu, J. E. Svensson, M. Halvarsson, and L. G. Johansson, Materials and Corrosion 56, 801 (2005).

    Article  CAS  Google Scholar 

  18. A. Andoh, S. Taniguchi, and T. Shibata, Materials Science Forum 369–372, 303 (2001).

    Article  Google Scholar 

  19. Z. Liu and W. Gao, Oxidation of Metals 54, 189 (2000).

    Article  CAS  Google Scholar 

  20. P. Burtin, J. P. Brunelle, M. Pijolat, and M. Soustelle, Applied Catalysis 34, 225 (1987).

    Article  CAS  Google Scholar 

  21. B. A. Pint, M. Treska, and L. W. Hobbs, Oxidation of Metals 47, 1 (1997).

    Article  CAS  Google Scholar 

  22. Y. Kitajima, S. Hayashi, S. Ukai, and T. Narita, Materials Science Forum 595–598, 1013 (2008).

    Article  Google Scholar 

  23. R. Chegroune, E. Salhi, A. Crisci, Y. Wouters, and A. Galerie, Oxidation of Metals 70, 331 (2008).

    Article  CAS  Google Scholar 

  24. O. Kubaschewski and R. Schmid-Fetzer, in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, eds G. Petzow and G. Effenberg, Vol. 5 (VCH, Cambridge, 1992), p. 325 (Fe2O3–Al2O3 system).

  25. H. I. Aaronson, G. Spanos, R. A. Masamura, R. G. Vardiman, D. W. Moon, E. S. K. Menon, and M. G. Hall, Materials Science and Engineering B32, 107 (1995).

    CAS  Google Scholar 

  26. E. N. Bunting, Bureau of Standards. Journal of research 6, 948 (1931).

    Google Scholar 

  27. M. A. Afifi, M. M. Abdel-Aziz, I. S. Yahia, M. Fadel, and L. A. Wahab, Journal of Alloys and Compounds 455, 92 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Exploratory Research, 20656115, (2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenari Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitajima, Y., Hayashi, S., Nishimoto, T. et al. Rapid Formation of α-Al2O3 Scale on an Fe–Al Alloy by Pure-Metal Coatings at 900 °C. Oxid Met 73, 375–388 (2010). https://doi.org/10.1007/s11085-009-9184-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9184-8

Keywords

Navigation