Skip to main content
Log in

KCl-Induced Corrosion of a 304-type Austenitic Stainless Steel in O2 and in O2 + H2O Environment: The Influence of Temperature

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of the 304-type (Fe18Cr10Ni) austenitic stainless steel was investigated in the temperature range 400–600 °C in 5% O2 and 5% O2 + 40% H2O. Exposure time was up to 1 week. Prior to exposure, the polished samples were coated with 0.1 mg/cm2 KCl. Uncoated samples were also exposed and used as references. The oxidized samples were analyzed by gravimetry and by ESEM/EDX, XRD, IC and AES. The results show that KCl is strongly corrosive. Corrosion is initiated by the reaction of KCl with the chromia-containing oxide that normally forms a protective layer on the alloy. This reaction produces potassium chromate particles, leaving a chromium-depleted oxide on the alloy surface. At 500 and 600 °C this results in rapid oxidation, resulting in the formation of a thick scale consisting of a mixture of hematite, spinel oxide ((Fe,Cr,Ni)3O4) and K2CrO4. The thick scale is poorly protective and permeable to e.g. chloride ions. The KCl-induced corrosion of alloy 304L in dry O2 and in an O2 + H2O mixture increases strongly with temperature in the range 400–600 °C. The strong temperature dependence is explained partly by the temperature dependence of the chromate-formation reaction and partly by the ability of the chromium-depleted oxide to protect the alloy at low temperature. At 400 °C, the oxide was still protective after 168 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Pettersson, C. Pettersson, N. Folkeson, L.-G. Johansson, E. Skog, and J.-E. Svensson, Materials Science Forum 522–523, 563 (2006).

    Article  Google Scholar 

  2. R. Riedl, J. Dahl, I. Obernberger, and M. Narodoslawsky, in China International Corrosion Control Conference ‘99 (China Chemical Anticorrosion Technology Association (CCATA), Beijing 1999).

  3. J. Pettersson, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 64, 23 (2005).

    Article  CAS  Google Scholar 

  4. H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  5. H. Asteman, J. E. Svensson, M. Norell, and L. G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  6. H. P. Michelsen, F. Frandsen, K. Dam-Johansen, and O. H. Larsen, Fuel Processing Technology 54, 95 (1998).

    Article  CAS  Google Scholar 

  7. H. J. Grabke, E. Reese, and M. Spiegel, Corrosion Science 37, 1023 (1995).

    Article  CAS  Google Scholar 

  8. M. Montgomery and A. Karlsson, Materials and Corrosion 50, 579 (1999).

    Article  CAS  Google Scholar 

  9. C. J. Wang and T. T. He, Oxidation of Metals 58, 415 (2002).

    Article  CAS  Google Scholar 

  10. Y. Shinata, Oxidation of Metals 27, 315 (1987).

    Article  CAS  Google Scholar 

  11. S. Y. Lee and M. J. McNallan, Corrosion 47, 868 (1991).

    CAS  Google Scholar 

  12. D. R. Lide, Handbook of Chemistry and Physics, 73rd ed, (CRC Press, 1993).

  13. E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase diagrams for ceramists, (The American Ceramic Society Inc, 1964).

  14. G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, and M. Ohlinger, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2007).

  15. CRCT, École Polytechnique de Monterál Génie Chimique (Factsage, Montreal).

  16. M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  CAS  Google Scholar 

  17. B, Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson, and L.-G. Johansson, Corrosion Science (submitted).

Download references

Acknowledgements

This work was carried out within the High Temperature Corrosion Centre (HTC) at Chalmers University of Technology. The support by the member companies and the Swedish Energy board is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pettersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, J., Svensson, JE. & Johansson, LG. KCl-Induced Corrosion of a 304-type Austenitic Stainless Steel in O2 and in O2 + H2O Environment: The Influence of Temperature. Oxid Met 72, 159–177 (2009). https://doi.org/10.1007/s11085-009-9153-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9153-2

Keywords

Navigation