Skip to main content
Log in

Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behaviour of X20 in various mixtures of water, oxygen, and hydrogen was investigated at temperatures between 500 °C and 700 °C (time: 336 h). The samples were characterised using reflected light microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy. Double-layered oxides developed during oxidation under all conditions. The morphology of the oxide layers was strongly influenced by temperature, whereas the influence of the oxidising environment appeared to be less pronounced, as long as it contained water vapour. The inner layer consisted of converted M23C6 embedded in Fe–Cr spinel after oxidation at 500 and 600 °C, while alternating layers of Cr-rich and Cr-poor oxide were observed after oxidation at 700 °C. An internal oxidation zone developed during oxidation at 500 and 600 °C, with its depth influenced by the oxidising environments. The results are discussed based on the various hypotheses of the accelerating effect of water vapour that have been put forth in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Obviously, the argumentation that OH is smaller than O2− and thus diffuses faster also influences oxide growth in humidified air.

References

  1. H. Nickel, Y. Wouters, M. Thiele, and W. J. Quadakkers, Fresenius’ Journal of Analytical Chemistry 361, 540 (1998).

    Article  CAS  Google Scholar 

  2. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  CAS  Google Scholar 

  3. M. Schütze, M. Schorr, D. P. Renusch, A. Donchev, and J. P. T. Vossen, Materials Research 7, 111 (2004).

    Article  Google Scholar 

  4. M. Schütze, D. Renusch, and M. Schorr, Materials at High Temperatures 39, 157 (2004).

    Google Scholar 

  5. H. Asteman, K. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Material Science Forum 369–372, 277 (2001).

    Google Scholar 

  6. F. liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J.-E. Svensson, and M. Halvarsson, Oxidation of Metals 66, 295 (2006).

    Article  CAS  Google Scholar 

  7. K. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).

    Article  CAS  Google Scholar 

  8. J. Zurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).

    Article  CAS  Google Scholar 

  9. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser, and W. J. Quadakkers, Corrosion Science 46, 2301 (2004).

    Article  CAS  Google Scholar 

  10. W. J. Quadakkers, P. J. Ennis, J. Zurek, and M. Michalik, Materials at High Temperatures 22, 37 (2005).

    Article  Google Scholar 

  11. D. Laverde, T. Gómez-Acebo, and F. Castro, Corrosion Science 46, 613 (2004).

    Article  CAS  Google Scholar 

  12. M. Ueda, Y. Oyama, K. Kawanura, and T. Murayama, Materials at High Temperature 22, 79 (2004).

    Article  Google Scholar 

  13. M. Ueda, M. Nanko, K. Kawamura, and T. Maruyama, Materials at High Temperatures 20, 109 (2003).

    Article  CAS  Google Scholar 

  14. F. J. Pérez and S. I. Castañeda, Surface Coating Technology 201, 6239 (2007).

    Article  CAS  Google Scholar 

  15. V. Lepingle, G. Louis, D. Petelot, B. Lefebvre, and B. Vandenberghe, Materials Science Forum 461–464, 1039 (2004).

    Google Scholar 

  16. C. Oswald and H. J. Grabke, Corrosion Science 46, 1113 (2004).

    Article  CAS  Google Scholar 

  17. J. P. T. Vossen, P. Gawenda, K. Rahts, M. Röhrig, M. Schorr, and M. Schutze, Materials at High Temperatures 14, 387 (1997).

    CAS  Google Scholar 

  18. Y. Ikeda and K. Nii, Oxidation of Metals 12, 487 (1978).

    Article  CAS  Google Scholar 

  19. S. Henry, A. Galerie, and L. Antoni, Materials Science Forum 369–372, 353 (2001).

    Article  Google Scholar 

  20. L. Thomlinson and N. J. Cory, Corrosion Science 29, 939 (1989).

    Article  Google Scholar 

  21. D. Wallinder, E. Hörnlund, and G. Hultquist, Journal of Electrochemical Society 149, B393 (2002).

    Article  CAS  Google Scholar 

  22. K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperatures 20, 63 (2003).

    Article  Google Scholar 

  23. M. Nakai, K. Nagai, Y. Murata, M. Morinaga, S. Matsuda, and M. Kanno, ISIJ International 45, 1066 (2005).

    Article  CAS  Google Scholar 

  24. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  CAS  Google Scholar 

  25. C. T. Fujii and R. A. Meussner, Journal of Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  26. Thermo-Calc Software AB, Sweden. http://www.thermocalc.com/.

  27. J. R. Taylor and A. T. Dinsdale, Zeitschrift für Metallkunde 84, 335 (1993).

    CAS  Google Scholar 

  28. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), p. 361 and chapter 10.

  29. J. Töpfer, S. Aggarwal, and R. Dieckmann, Solid State Ionics 81, 251 (1995).

    Article  Google Scholar 

  30. H. E. Evans, International Materials Reviews 40, 1 (1995).

    CAS  Google Scholar 

  31. B. B. Ebbinghaus, Combustion and Flames 93, 119 (1993).

    Article  CAS  Google Scholar 

  32. W. Przybilla and M. Schütze, Oxidation of Metals 28, 103 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge DONG Energy and Vattenfall for fruitful partnership in the present PSO funded project (project no. 5293, ENERGINET.dk). The project is part of the European COST 536 ACCEPT action and the Swedish CROX project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette N. Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, A.N., Montgomery, M. & Somers, M.A.J. Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure. Oxid Met 71, 201–218 (2009). https://doi.org/10.1007/s11085-009-9138-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9138-1

Keywords

Navigation