Skip to main content
Log in

Oxidation Resistance of a Cr0.50Al0.50N Coating Prepared by Magnetron Sputtering on Alloy K38G

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A Cr0.50Al0.50N coating has been prepared by a reactive-magnetron-sputtering method on alloy K38G. The coating possesses mainly the B1 type with a small amount of B4-type crystal structure phase. Isothermal oxidation tests were performed at 900–1,100 °C for 20 h by thermogravimetric analysis (TGA) in air. The results reveal that the coated samples have much lower mass gain than that of the bare alloy. The parabolic rate constants of the coated samples decrease by 2 orders of magnitude compared with the bare alloy at 1,000 and 1,100 °C. During the oxidation of the coated samples below 1,000 °C, the main oxide is Cr2O3, but above 1,000 °C, the scale changes to α-Al2O3. The observed oxidation behaviors demonstrate that the Cr0.50Al0.50N coating can provide good protection against corrosion over a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. R. Castle and D. R. Gabe, International Materials Reviews 44, 37 (1999).

    Article  CAS  Google Scholar 

  2. A. Elsawy, H. Soda, and A. Mclean, Werkstoffe und Korrosion 56, 669 (2005).

    Article  CAS  Google Scholar 

  3. G. W. Goward, Surface & Coatings Technology 109, 73 (1998).

    Article  Google Scholar 

  4. Y. Itoh and M. Tamura, Journal of the Engineering for Gas Turbines and Power-transaction of the ASME 121, 476 (1999).

    CAS  Google Scholar 

  5. G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, Materials Science and Engineering A 25, 40 (1998).

    Article  Google Scholar 

  6. C. Leyens, B. A. Pint, and I. G. Wright, Surface & Coatings Technology 133, 15 (2000).

    Article  Google Scholar 

  7. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, and B. A. Pint, Metallurgical and Materials Transactions A 30, 2679 (1999).

    Article  Google Scholar 

  8. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, and B. A. Pint, Metallurgical and Materials Transactions A 32, 1927 (2001).

    Article  Google Scholar 

  9. A. L. Purvis and B. M. Warnes, Surface & Coatings Technology 146, 1 (2001).

    Article  Google Scholar 

  10. W. J. Brindley and R. A. Miller, Surface and Coatings Technology 43, 446 (1990).

    Article  Google Scholar 

  11. Y. H. Sohn, R. R. Biederman, and J. R. Sisson, Thin Solid Films 250, 1 (1994).

    Article  CAS  Google Scholar 

  12. E. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).

    Article  CAS  Google Scholar 

  13. A. G. Evans, D. R. Mumm, J. W. Meiter, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  14. V. K. Tolpygo and D. R. Clarke, Acta Materialia 48, 3283 (2000).

    Article  CAS  Google Scholar 

  15. J. R. Nicholls, Materials World 4, 19 (1996).

    CAS  Google Scholar 

  16. J. R. Nicholls, N. J. Simms, W. Chan, and H. E. Evans, Surface & Coatings Technology 149, 236 (2002).

    Article  CAS  Google Scholar 

  17. J. R. Nicholls, JOM 52, 28 (2000).

    Article  CAS  Google Scholar 

  18. M. J. Pomeroy, Materials & Design 26, 223 (2005).

    Article  CAS  Google Scholar 

  19. O. Banakh, P. E. Schmid, R. Sanjines, and F. Levy, Surface & Coatings Technology 163–164, 57 (2003).

    Article  Google Scholar 

  20. A. Kayani, T. L. Buchanan, M. Kopczyk, C. Collins, J. Lucas, K. Lund, R. Hutchison, P. E. Gannon, M. C. Deibert, R. J. Smith, D. S. Choi, and V. I. Gorokhovsky, Surface & Coatings Technology 201, 4460 (2006).

    Article  CAS  Google Scholar 

  21. M. Kawate, A. K. Hashimoto, and T. Suzuki, Surface & Coatings Technology 165, 163 (2003).

    Article  CAS  Google Scholar 

  22. J. C. Sánchez-López, D. Martínez-Martínez, C. López-Cartes, A. Fernández, M. Brizuela, A. García-Luis, and J. I. Oñate, Journal of Vacuum Science Technology A 23, 681 (2005).

    Article  Google Scholar 

  23. D. B. Wiles and R. A. Young, Journal of Applied Crystallography 14, 149 (1981).

    Article  CAS  Google Scholar 

  24. M. Zhu, M. Li, and Y. Zhou, Surface & Coatings Technology 201, 2878 (2006).

    Article  CAS  Google Scholar 

  25. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  26. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  27. T. Kacsich, K. P. Lieb, A. Schaper, and O. Schulte, Journal of Physics: Condensed Matter 8, 10703 (1996).

    Article  CAS  Google Scholar 

  28. S. Hofmann and H. A. Jehn, Werkstoffe und Korrosion 41, 756 (1990).

    Article  CAS  Google Scholar 

  29. P. H. Mayrhofer, H. Willmann, and C. Mitterer, Surface & Coatings Technology 146–147, 222 (2001).

    Article  Google Scholar 

  30. E. Huber and S. Hofmann, Surface & Coatings Technology 68, 64 (1994).

    Article  Google Scholar 

  31. Y. K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  32. Powder Diffraction File, Cards No. 38-1479, Joint Committee on Powder Diffraction Standards.

  33. Powder Diffraction File, Cards No. 46-1212, Joint Committee on Powder Diffraction Standards.

  34. F. Ansart, H. Ganda, R. Saporte, and J. P. Traverse, Thin Solid Films 260, 38 (1995).

    Article  CAS  Google Scholar 

  35. H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  CAS  Google Scholar 

  36. R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).

    Article  CAS  Google Scholar 

  37. F. H. Stott, G. C. Wood, and F. A. Golightly, Corrosion Science 19, 869 (1979).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Outstanding Young Scientist Foundation of China for Y. C. Zhou under grant No. 59925208, Natural Sciences Foundation of China under grant No. 50232040, 50571106, 50072034, 90403027, 863 project, and High-tech Bureau of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T.P., Yin, X.H., Li, M.S. et al. Oxidation Resistance of a Cr0.50Al0.50N Coating Prepared by Magnetron Sputtering on Alloy K38G. Oxid Met 68, 193–210 (2007). https://doi.org/10.1007/s11085-007-9069-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-007-9069-7

Keywords

Navigation