Skip to main content
Log in

Nanoscale Studies of the Early Stages of Oxidation of a TiAl-Base Alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The strategy to perform nanoscale studies of the initial stages of oxidation of TiAl involved first gaining some information on the electronic structure of pure TiO2 surfaces and then on TiAl surfaces before and after oxidation both in low- and high-oxygen potentials. Both materials were studied in atomically-cleaned states generated by repeated sputtering and heating. It was found that the oxygen vacancies created additional defect states in the band gap of stoichiometric TiO2. The results obtained on TiO2 were used as fingerprints to study the oxide nucleation. The results on the initial stages of oxidation of TiAl confirm the nucleation of Ti2O3 islands of nanometer size and monolayer height in a low-oxygen-pressure environment, whilst a TiO2 layer developed in an atmospheric environment. The ledges on atomically-cleaned surfaces usually acted as nucleation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. K. Datta, K. Natesan, and J. S. Burnell-Gray, Coatings technology: intermetallic coatings and coatings for intermetallics, invited book chapter: Intermetallic Compounds: Principles and Practice Vol. 3 Progress. J. H. Westbrook, and R. L. Fleischer, eds. (John Wiley, 2002), p. 561.

  2. F. Appel et al., Advanced Engineering Materials 2, 699 (2000).

    Google Scholar 

  3. R. LeHolm, B. Norris, and A. Gurney, Advanced Materials & Processes 159, 27 (2001).

    Google Scholar 

  4. F. H. Froes and C. Suryanarayana, in Physical Metallurgy and Processing of Intermetallic Compounds, N. S. Stoloff, and V. K. Sikka Eds. (Chapman & Hall, 1996), p. 297.

  5. M. M. Keller, P. E. Jones, W. J. Porter, and D. Eylon, JOM 49, 42 (1997).

    Google Scholar 

  6. T. Noda, Intermetallics 6, 709 (1998).

    Google Scholar 

  7. D. M. Dimiduk, Materials Science and Engineering A263, 281 (1999).

    Google Scholar 

  8. H. L. Du, P. K. Datta, D. B. Lewis, and J. S. Burnell-Gray, Corrosion Science 36, 631 (1994).

    Google Scholar 

  9. H. L. Du, P. K. Datta, J. Leggett, J. R. Nicholls, J. C. Bryar, and M. H. Jacobs, Advances in Surface Engineering, Vol. I, in Advances in Coatings and Surface Engineering, P. K. Datta, and J. S. Burnell-Gray, eds. (Proceedings, the Royal Society of Chemistry, Cambridge, 1997), pp. 53–66.

    Google Scholar 

  10. G. Welsh and A. J. Kahveci, Oxidation of High Temperature Intermetallics, (The Minerals, Metals, and Materials Society, Warrendale, 1988), pp. 207.

    Google Scholar 

  11. E. U. Lee and H. Waldman, Scripta Metall. 22, 1389 (1988).

    Google Scholar 

  12. E. Kasahara, M. Yoshimoto, and R. Tanaka, High Temperature Technology 8, 179 (1990).

    Google Scholar 

  13. R. A. Perkins, K. Y. Chiang, G. H. Meier, and R. Miller, Oxidation of High Temperature Intermetallics, (The Minerals, Metals, and Materials Society, Warrendale, 1988), p. 157.

    Google Scholar 

  14. A. Gil, H. Hoven, E. Wallura, and W. Quadakkers, Corrosion Science 34, 615 (1993).

    Google Scholar 

  15. E. H. Copland, B. Gleeson, and D. J. Young, Acta Mater 47, 2937 (1999).

    Google Scholar 

  16. R. A. Perkins, K. Y. Chiang, and G. H. Meier, Scripta Metall. 21, 1505 (1987).

    Google Scholar 

  17. W. B. Retallick, M. P. Brady, and D. L. Humphrey, Intermetallics 6, 335 (1998).

    Google Scholar 

  18. S. Frangini, A. Mignone, and F. DeRiccadis, Journal of Materials Science 29, 714 (1994).

    Google Scholar 

  19. S. A. Kekare and P. B. Aswath, Journal of Materials Science 32, 2485 (1997).

    Google Scholar 

  20. V. Shemet, H. Hoven, and W. J. Quadakkers, Intermetallics 5, 311 (1997).

    Google Scholar 

  21. J. Geng, G. Gantner, P. Oelhafen, and P. K. Datta, Applied Surface Science 158, 64 (2000).

    Google Scholar 

  22. S. K. Varma, A. Chan, and R. N. Mahapatra, Oxidation of Metals 55, 423 (2001).

    Google Scholar 

  23. K. E. Wiedemann, S. N. Sankaran, R. K Clark, and T. A. Wallace, Oxidation of High Temperature Intermetallics, (The Minerals, Metals, and Materials Society, Warrendale, 1988), p. 195.

    Google Scholar 

  24. S. Becker, A Rahmel, M. Schorr, and M. Sch¨utze, Oxidation of Metals 38, 425 (1992).

    Google Scholar 

  25. H. J. Guntherodt and R. Wiesendanger, eds. Scanning Tunneling Microscopy I, (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  26. R. Wiesendanger and H. J. Guntherodt, eds. Scanning Tunneling Microscopy II, (2nd edn.) (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  27. R. Wiesendanger and H. J. Guntherodt, eds. Scanning Tunneling Microscopy III, (2nd edn.) (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  28. R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surface Science 181, 295 (1987).

    Google Scholar 

  29. R. M. Feenstra, Physics Reviews B50, 4561 (1994).

    Google Scholar 

  30. Z. Klusek, S. Pierzgalski, and S. Datta, Appl. Surf. Sci. 221, 120 (2004).

    Google Scholar 

  31. A. Basu, A. W. Brinkman, Z. Klusek, S. Datta, and P. Kowalczyk, J. Appl. Phys. 92, 4123 (2002).

    Google Scholar 

  32. Z. Klusek, Vacuum 63, 139 (2001).

    Google Scholar 

  33. Z. Klusek, Z. Waqar, W. Kozlowski, P. Kowlaczyk, E. Denisov, I. Makarenko, T. Kompaniets, A. Titkov, and P. K. Datta, Appl. Surf. Sci. 187, 28 (2002).

    Google Scholar 

  34. Z. Klusek, P. K. Datta, W. Kozlowski, P. Byszewski, and P. Kowlaczyk, Surf. Sci. 507–510, 577 (2002).

    Google Scholar 

  35. U. Diebold, Surface Science Reports, 48, 53 (2003).

    Google Scholar 

  36. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

  37. E. Asari, W. Hayami, and R. Souda, Applied Surface Science 167, 169 (2000).

    Google Scholar 

  38. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. Lett. 36, 1335 (1976).

    Google Scholar 

  39. Z. Zhang, S. Jeng, and V. E. Henrich, Phys. Rev. B43, 12004 (1991).

  40. R. Heise, R. Courths, Adsorption in Ordered Surfaces of Ionic Solids and Thin Films, E. Umbach, and H. J. Freund eds. Springer Series in Surface Science, Vol. 33, (Springer-Verlag, Berlin 1993).

    Google Scholar 

  41. D. R. Gaskell, Introduction to Metallurgical Thermodynamics, (Hemisphere Publishing Corporation, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H.L., Datta, P.K., Klusek, Z. et al. Nanoscale Studies of the Early Stages of Oxidation of a TiAl-Base Alloy. Oxidation of Metals 62, 175–193 (2004). https://doi.org/10.1007/s11085-004-7806-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-004-7806-8

Navigation