Skip to main content
Log in

The Oxidation Behavior of an ODS Copper Alloy Cu–Al2O3

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of Glidcop AL-15 (Cu-O.3 wt.% Al2O3), an ODS copper alloy of interest for aerospace structural application, was investigated by oxidation and two-step oxidation in a TGA. The results were compared with the oxidation kinetics of pure Cu and two other aerospace Cu alloys, GRCop-84 (Cu-8Cr-4Nb) and NARloy-Z (Cu-3Ag-O.5Zr). AL-15 exhibited the lowest oxidation rate from 500 to 650°C. The superiority in oxidation resistance is thought to result from the Al2O3, and the two-step oxidation results suggest the Al2O3 dissolves in the oxide scale, perhaps creating charge and stress fields that suppress oxidation by retarding the Cu diffusion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. E. Paton, Materials Science & Engineering 143 (1–2), 21 (1991).

    Google Scholar 

  2. K. T. Chiang, T. A. Wallace, and R. K. Clark, Surface & Coatings Technology 86–87, 48 (1996).

    Google Scholar 

  3. L. U. Ogbuji, General Isothermal Oxidation Behavior of Cu-8Cr-4Nb, Materials at High Temperatures 21 (2), 101–109 (2004).

    Google Scholar 

  4. L. U. Ogbuji and D. L Humphrey, Oxidation of Metals 60 (3/4), 271 (2003).

    Google Scholar 

  5. D. L. Ellis et al., Scripta Metallurgica 24, 885 (1990).

    Google Scholar 

  6. P. Kofstad, High-Temperature Corrosion (Elsevier Applied Science, NY, 1988).

    Google Scholar 

  7. J. H. Park and K. Natesan, Oxidation of Metals 39 (5/6), 411 (1993).

    Google Scholar 

  8. B. Reppich, Zeitschrift Fur Metallkunde 93 (7), 605 (2002).

    Google Scholar 

  9. M. Heilmaier, H. Kestler, and J. C. Gibeling, Zeitschrift Fur Metallkunde 93 (7), 666 (2002).

    Google Scholar 

  10. A. Ronnquist and H. Fischmeister, Journal of Institutional of Metals 89, 65 (1960–1961).

    Google Scholar 

  11. J. Bardeen, W. Brattain, and W. Schockley, Journal of Chemical Physics 14, 714 (1946).

    Google Scholar 

  12. S. K. Roy, S. K. Mitra, and S. K. Bose, Oxidation of Metals 49 (3/4), 261 (1998).

    Google Scholar 

  13. L. M. Landsberger and W. A. Tiller, Journal of the Electrochemical Society 137 (9), 2825 (1990).

    Google Scholar 

  14. L. U. Ogbuji, Journal of American Ceramic Society 80 (6), 1544 (1997).

    Google Scholar 

  15. H. S. Park and D. K. Kim, Journal of American Ceramic Society 84 (11), 2526 (2001).

    Google Scholar 

  16. H. Hamasaki, Solid State Electronics 25 (6), 479 (1982).

    Google Scholar 

  17. S. Mrowec and A. Stoklosa, Oxidation of Metals 3 (3), 291 (1971).

    Google Scholar 

  18. W. D. Kingery, H. K. Bowen, and D. R Uhlmann, Introduction to Ceramics (J. Wiley & Sons, NY, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogbuji, L.U. The Oxidation Behavior of an ODS Copper Alloy Cu–Al2O3 . Oxidation of Metals 62, 141–151 (2004). https://doi.org/10.1007/s11085-004-7804-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-004-7804-x

Navigation