Skip to main content
Log in

Oxidation Behavior of ODS Fe–Cr Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Four experimental oxide dispersion strengthened (ODS)Fe-(13–14 at. %)Cr ferritic alloys were exposed for up to 10,000 hr at 700–1100 °C in air and in air with 10vol.% water vapor. Their performance has been compared to other commercial ODS and stainless steel alloys. At 700–800°C, the reaction rates in air were very low for all of the ODS Fe–Cr alloys compared to stainless steels. At 900°C, a Y2O3 dispersion showed a distinct benefit in improving oxidation resistance compared to an Al2O3 dispersion or no addition in the stainless steels. However, for the Fe-13 %Cr alloy, breakaway oxidation occurred after 7,000 hr at 900°C in air. Exposures in 10 % water vapor at 800 and 900°C and in air at 1000 and 1100°C showed increased attack for this class of alloys. Because of the relatively low Cr reservoirs in these alloys, their maximum operating temperature in air will be below 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ukai M. Harada H. Okada M. Inoue S. Nomura S. Shikakura K. Asabe T. Nishida M. Fujiwara (1993) Journal of Nuclear Materials 204 65–73

    Google Scholar 

  2. S. Ukai T. Nishida T. Okuda T. Yoshitake (1998) Journal of Nuclear Materials 263 1745–1749

    Google Scholar 

  3. S. Ukai M. Fujiwara (2002) Journal of Nuclear Materials 307 749–757 Occurrence Handle10.1016/S0022-3115(02)01043-7

    Article  Google Scholar 

  4. Z. Yang and T. B. Gibbons, in Fatigue, Environmental Factors and New Materials, PVP-Vol. 374, ASME, 1998.

  5. G. Scheffknecht, Q. Chen, and G. Weissinger, in Proc. 6th Intl. Charles Parsons Turbine Conference, A. Strang et al., eds. (Maney, London, 2003) pp. 113–128.

  6. J. R. DiStefano B. A. Pint J. H. DeVan HD Röhrig LD Chitwood (2000) Journal of Nuclear Materials 283–287 841–845

    Google Scholar 

  7. B. A. Pint J. R. DiStefano (2005) Oxidation of Metals 62 33–55

    Google Scholar 

  8. E. E. Bloom (1998) Journal of Nuclear Materials 258–263 7–17

    Google Scholar 

  9. R. J. Kurtz K. Abe V. M. Chernov V. A. Kazakov G. E. Lucas H. Matsui T. Muroga G. R. Odette D. L. Smith S. J. Zinkle (2000) Journal of Nuclear Materials 283–287 70–78

    Google Scholar 

  10. A. Hasegawa A. Kohyama R. H. Jones L. L. Snead B. Riccardi P. Fenici (2000) Journal of Nuclear Materials 283–287 128–137

    Google Scholar 

  11. R. L. Klueh K. Ehrlich F. Abe (1992) Journal of Nuclear Materials 191–194 116–124

    Google Scholar 

  12. J. S. Benjamin (1970) Metallurgical Transactions 1 2943–2951

    Google Scholar 

  13. JM Poole JJ Fischer GAJ Hack GM McColvin (1994) Advanced High Temperature Structural Materials & Protective Coatings NRCC Ottawa, Canada 32–53

    Google Scholar 

  14. E Arzt R Behr E Göhring P Grahle RP Mason (1997) Materials Science and Engineering A234–236 22–29

    Google Scholar 

  15. A. U. Seybolt (1966) ASM Transactions Quarterly 59 860–875

    Google Scholar 

  16. H. H. Davis H. C. Graham I. A. Kvernes (1971) Oxidation of Metals 3 431–451

    Google Scholar 

  17. I. G. Wright B. A. Wilcox (1974) Metallurgical Transactions 5 957–960

    Google Scholar 

  18. H. Nagai Y. Takebayashi H. Mitani (1981) Metallurgical Transactions 12A 435–442

    Google Scholar 

  19. T. A. Ramanarayanan R. Petkovic-Luton (1985) Berichte der Bunsen-Gesellschaft fur Physikalische Chemie 89 402–409

    Google Scholar 

  20. K. L. Luthra E. L. Hall (1986) Oxidation of Metals 26 385–396

    Google Scholar 

  21. B. A. Pint A. J. Garratt-Reed L. W. Hobbs (1995) Materials at High Temperature 13 3–16

    Google Scholar 

  22. B. A. Pint P. F. Tortorelli I. G. Wright (1996) Materials and Corrosion 47 663–674

    Google Scholar 

  23. B. A. Pint (1998) Oxidation of Metals 49 531–560

    Google Scholar 

  24. AV Krajnikov AN Demidik HM Ortner (1997) Materials Science and Engineering A234–236 357–360

    Google Scholar 

  25. G. R. Romanoski L. L. Snead R. L. Klueh D. T. Hoelzer (2000) Journal of Nuclear Materials 283–287 642–646

    Google Scholar 

  26. D. Caplan M. Cohen (1959) Corrosion 15 57–62

    Google Scholar 

  27. J. Shen L. Zhou T. Li (1997) Oxidation of Metals 48 347–356

    Google Scholar 

  28. H. Nickel Y. Wouters M. Thiele W. J. Quadakkers (1998) Fresenius’ Journal of Analytical Chemistry 361 540–544

    Google Scholar 

  29. B. A. Pint, and J. M. Rakowski, NACE Paper \#00-259, Houston, TX, presented at NACE Corrosion 2000, Orlando, FL, March 2000.

  30. H. Asteman J. -E. Svensson L. -G. Johansson M. Norell (1999) Oxidation of Metals 52 95–111

    Google Scholar 

  31. H. Asteman J. -E. Svensson M. Norell L. -G. Johansson (2000) Oxidation of Metals 54 11–26

    Google Scholar 

  32. S. Henry A. Galerie L. Antoni (2001) Materials Science Forum 369–372 353–360

    Google Scholar 

  33. B. A. Pint, P. F. Tortorelli, and I. G. Wright, in Cyclic Oxidation of High Temperature Materials, M. Schütze and W. J. Quadakkers, eds. (The Institute of Materials, London, 1999), pp. 111–132.

  34. B. Pieraggi (1987) Oxidation of Metals 27 177–185

    Google Scholar 

  35. Lambertin and G. Beranger, in High Temperature Oxidation and Sulfidation Processes, W. Embury, ed. (Canadian Institute of Metals, Ottawa, 1990), pp. 93–100.

  36. B. A. Pint (1996) Oxidation of Metals 45 1–36

    Google Scholar 

  37. PY Hou J Stringer (1995) Materials Science and Engineering A202 1–10

    Google Scholar 

  38. D. T. Hoelzer, B. A. Pint, and I. G. Wright, J. Nuclear Materials, 283–287, (2000) 1306–1310.

  39. W. J. Quadakkers M. J. Bennett (1994) Materials Science and Technology 10 126–131

    Google Scholar 

  40. I. G. Wright, B. A. Pint, L. M. Hall, and P. F. Tortorelli, in Lifetime Modelling of High Temperature Corrosion Processes, M. Schütze, W. J. Quadakkers, J. R. Nicholls, eds. (Maney, London, UK, 2001), pp. 66–82.

  41. B. A. Pint L. R. Walker I. G. Wright (2004) Materials at High Temperature 21 175–185

    Google Scholar 

  42. A. Strawbridge P. Y. Hou (1994) Materials at High Temperature 12 177–181

    Google Scholar 

  43. G.V. Samsonov (1973) Oxide Handbook IFI/Plenum New York

    Google Scholar 

  44. N. V. Bangaru R. C. Krutenat (1984) Journal of Vacuum Science and Technology B 2 806–815

    Google Scholar 

  45. Zs Tökei K Hennesen H Viefhaus HJ Grabke (2000) Materials Science and Technology 16 1129–1138

    Google Scholar 

  46. D. R. Baer M. D. Merz (1980) Metallurgical Transactions 11A 1973–1980

    Google Scholar 

  47. G. J. Yurek D. Eisen A. Garratt-Reed (1982) Metallurgical Transactions 13A 473–485

    Google Scholar 

  48. M. J. Maloney, and G. J. Yurek, in Composites/Corrosion-Coatings of Advanced Materials, Proc. Vol. IMAM-4, S. Kimura, A. Kobayashi, S. Umekawa, K. Nii, Y. Saito, and M. Yoshimura, eds. (Materials Research Society, Pittsburgh, PA, 1989) pp. 383–388.

  49. J. G. Goedjen D. A. Shores (1992) Oxidation of Metals 37 125–142

    Google Scholar 

  50. B. A. Pint J. Leibowitz J. H. DeVan (1999) Oxidation of Metals 51 183–199

    Google Scholar 

  51. H. E. Evans R. C. Lobb (1984) Corrosion Science 24 223–236

    Google Scholar 

  52. A. S. Nagelberg R. W. Bradshaw (1981) Journal of the Electrochemical Society 128 2655–2659

    Google Scholar 

  53. B. A. Pint, K. L. More, and P. F. Tortorelli, ASME Paper #2002-GT-30543, presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Amsterdam, Netherlands, June 3–6, 2002.

  54. A. L. Marasco D. J. Young (1991) Oxidation of Metals 37 157–174

    Google Scholar 

  55. R. C. Lobb J. A. Sasse H. E. Evans (1989) Materials Science and Technology 5 828–834

    Google Scholar 

  56. E. J. Opila and N. S. Jacobson, in Fundamental Aspects of High Temperature Corrosion, D. A. Shores, R. A. Rapp, and P. Y. Hou, eds. Proc. Vol. 96–26, (Electrochemical Society, Pennington, NJ, 1996), pp. 344–356.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A. Pint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A., Wright, I.G. Oxidation Behavior of ODS Fe–Cr Alloys. Oxid Met 63, 193–213 (2005). https://doi.org/10.1007/s11085-004-3200-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-004-3200-9

Keywords

Navigation