Modelling the Interior Structure of Enceladus Based on the 2014’s Cassini Gravity Data

  • R.-S. TaubnerEmail author
  • J. J. Leitner
  • M. G. Firneis
  • R. Hitzenberger


We present a model for the internal structure of Saturn’s moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite’s potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth’s sea floors.


Enceladus Icy moons Internal structure Subsurface water reservoir 



We acknowledge financial support of this study by the University of Vienna in the framework of Research Platform ExoLife (FPF-234).


  1. Barr AC, McKinnon WB (2007) Convection in Enceladus’ ice shell: conditions for initiation. Geophys Res Lett 34:9CrossRefGoogle Scholar
  2. de Pater I, Lissauer JJ (2010) Planetary sciences, vol 33. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet In 25:297–356CrossRefGoogle Scholar
  4. Faure G, Mensing TM (2007) Introduction to planetary science: the geological perspective, vol 28-32. Springer, NetherlandsGoogle Scholar
  5. Hussmann H, Sohl F, Spohn T (2006) Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185:258–273CrossRefGoogle Scholar
  6. Hendrix A et al. (2010) The ultraviolet reflectance of Enceladus: implications for surface composition. Icarus 206:608–617CrossRefGoogle Scholar
  7. Iess L et al. (2014) The gravity field and interior structure of Enceladus. Science 344:78–80CrossRefPubMedGoogle Scholar
  8. Jacobson RA (2010) SAT339 - JPL satellite ephemerisGoogle Scholar
  9. Kato C et al. (1998) Extremely barophilic bacteria isolated from the Mariana Trench, challenger deep, at a depth of 11000 meters. Appl Environ Microbiol 64:1510–1513PubMedCentralPubMedGoogle Scholar
  10. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae and recommendation for two new genera Listonella and Shewanella. Syst Appl Microbiol 6:171–182CrossRefGoogle Scholar
  11. McKay CP et al. (2008) The possible origin and persistence of life on Enceladus and detection of biomarkers in the Plume. Astrobiology 8:909–919CrossRefPubMedGoogle Scholar
  12. Roberts JH (2015) The fluffy core of Enceladus. Icarus 258:54–66CrossRefGoogle Scholar
  13. Morelle R (2014) New record for deepest fish, BBC News, 19/12/2014.
  14. Postberg F et al. (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101CrossRefPubMedGoogle Scholar
  15. Rappaport NJ et al. (2007) Mass and interior of Enceladus from Cassini data analysis. Icarus 190:175–178CrossRefGoogle Scholar
  16. McKinnon WB (2015) Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys Res Lett 42:2137–2143CrossRefGoogle Scholar
  17. Schrenk MO et al. (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606CrossRefGoogle Scholar
  18. Schubert G et al. (2004) Jupiter: the planet, satellites and magnetosphere, 281-306. Cambridge planetary science, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  19. Schubert G et al. (2007) Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188:345–355CrossRefGoogle Scholar
  20. Taubner R-S (2012) The possibility of the existence of a nitrogen cycle within Enceladus. Master Thesis, University of ViennaGoogle Scholar
  21. Thomas PC (2010) Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208:395–401CrossRefGoogle Scholar
  22. Thomas PC et al. (2015) Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264:37–47CrossRefGoogle Scholar
  23. Zolotov MY (2007) An oceanic composition on early and today’s Enceladus. Geophys Res Lett 34:L23203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • R.-S. Taubner
    • 1
    • 2
    Email author
  • J. J. Leitner
    • 1
    • 2
  • M. G. Firneis
    • 1
    • 2
  • R. Hitzenberger
    • 1
    • 3
  1. 1.Research Platform: ExoLifeUniversity of ViennaViennaAustria
  2. 2.Institute of AstrophysicsUniversity of ViennaViennaAustria
  3. 3.Aerosolphysics and Environmental Physics, Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations