Skip to main content
Log in

Boolean Dimension of a Boolean Lattice

  • Published:
Order Aims and scope Submit manuscript

Abstract

For every integer n with \(n \geqslant 6\), we prove that the Boolean dimension of a poset consisting of all the subsets of \(\{1,\dots ,n\}\) equipped with the inclusion relation is strictly less than n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

No empirical datasets were generated or analyzed during the current study.

References

  1. Barrera-Cruz, F., Prag, T., Smith, H.C., Taylor, L., Trotter, W.T.: Comparing Dushnik-Miller dimension, Boolean dimension and local dimension. Order 37(2), 243–269 (2019). arXiv:1710.09467

  2. Blake, H.S., Micek, P., Trotter, W.T.: Boolean dimension and dim-boundedness: Planar cover graph with a zero (2022). arXiv:2206.06942

  3. Brightwell, G.R., Kierstead, H.A., Kostochka, A.V., Trotter, W.T.: The dimension of suborders of the Boolean lattice. Order 11(2), 127–134 (1994)

    Article  MathSciNet  Google Scholar 

  4. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63(3), 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  5. Felsner, S., Fishbur, P.C., Trotter, W.T.: Finite three dimensional partial orders which are not sphere orders. Discret. Math. 201(1), 101–132 (1999). https://doi.org/10.1016/S0012-365X(98)00314-8

    Article  MathSciNet  Google Scholar 

  6. Felsner, S., Mészáros, T., Micek, P.: Boolean dimension and tree-width. Combinatorica 40(5), 655–677 (2020). arXiv:1707.06114

  7. Füredi, Z.: The order dimension of two levels of the Boolean lattice. Order 11(1), 15–28 (1994)

    Article  MathSciNet  Google Scholar 

  8. Gambosi, G., Nešetřil, J., Talamo, M.: On locally presented posets. Theoret. Comput. Sci. 70(2), 251–260 (1990). https://doi.org/10.1016/0304-3975(90)90125-2

    Article  MathSciNet  Google Scholar 

  9. Haiman, M.: The dimension of divisibility orders and multiset posets (2022). arXiv:2201.12952

  10. Hurlbert, G., Kostochka, A., Talysheva, L.: The dimension of interior levels of the Boolean lattice. Order 11, 10 (2000)

    MathSciNet  Google Scholar 

  11. Kierstead, H.: On the order dimension of 1-sets versus k-sets. J. Comb. Theory Ser. A 73(2), 219–228 (1996). https://doi.org/10.1016/S0097-3165(96)80003-3

    Article  MathSciNet  Google Scholar 

  12. Kierstead, H.: The dimension of two levels of the Boolean lattice. Discret. Math. 201(1), 141–155 (1999). https://doi.org/10.1016/S0012-365X(98)00316-1

    Article  MathSciNet  Google Scholar 

  13. Knauer, K., Trotter, W.T.: Concepts of dimension for convex geometries (2023). arXiv:2303.08945

  14. Kostochka, A.V.: The dimension of neighboring levels of the Boolean lattice. Order 14(3), 267–268 (1997)

    Article  MathSciNet  Google Scholar 

  15. Lewis, D., Souza, V.: The order dimension of divisibility. J. Comb. Theory Ser. A 179, 105391 (2021). arxiv:2001.08549

  16. Nešetřil, J., Pudlák, P.: A note on Boolean dimension of posets. In: Irregularities of partitions (Fertőd, 1986), volume 8 of Algorithms Combin. Study Res. Texts, pp. 137–140. Springer, Berlin (1989)

  17. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.), Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pp. 244–257. Springer (2009)

  18. Souza, V., Versteegen, L.: Improved bounds for the dimension of divisibility (2022). arXiv:2202.04001

  19. Trotter, W.T.: Dimension for posets and chromatic number for graphs. In: 50 Years of Combinatorics, Graph Theory, and Computing, chapter 5. CRC Press (2019)

  20. Trotter, W.T., Walczak, B., Wang, R.: Dimension and cut vertices: An application of Ramsey theory. In: Connections in Discrete Mathematics, pp. 187–199. Cambridge University Press (2018). arXiv:1505.08162

Download references

Funding

M. Briański, J. Hodor, H. La, and P. Micek are partially supported by a Polish National Science Center grant (BEETHOVEN; UMO-2018/31/G/ST1/03718).

Author information

Authors and Affiliations

Authors

Contributions

As it is customary for mathematical publications, the authors wish not to disclose the details of participation, and each author will receive equal credit.

Corresponding author

Correspondence to Marcin Briański.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A   The Code to Verify Lemma 6

Appendix A   The Code to Verify Lemma 6

We provide a short Python code that verifies whether the five linear orders in Table 1 and the function \(\phi \) defined in the proof of Lemma 6 form a Boolean realizer of \(\mathcal {B}_{6}\). Beneath the code, we give the formatted linear orders so that they can be directly inputted into the script for verification.

figure a

The input consists of 5 lines. Each represents one of the linear orders in Table 1. The subsets of [6] are converted to corresponding decimal integers based on their binary representations. For example, the number 13 corresponds to the set \(\{ 1, 3, 4 \}\), since the binary representation of 13 on 6 bits is \(001101_2\).

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briański, M., Hodor, J., La, H. et al. Boolean Dimension of a Boolean Lattice. Order (2024). https://doi.org/10.1007/s11083-024-09666-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11083-024-09666-w

Keywords

Mathematics Subject Classification (2010)

Navigation