Skip to main content
Log in

The order dimension of two levels of the Boolean lattice

  • Published:
Order Aims and scope Submit manuscript

Abstract

LetB n(s, t) denote the partially ordered set consisting of alls-subsets andt-subsets of ann-element underlying set where these sets are ordered by inclusion. Answering a question of Trotter we prove that dim(B n(k, n−k))=n−2 for 3⩽k<(1/7)n 1/3. The proof uses extremal hypergraph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bárány (1978) A short proof of Kneser's conjecture,J. Combin. Th., Ser. A 25, 325–326.

    Google Scholar 

  2. B. Bollobás (1965) On generalized graphs,Acta Math. Acad. Sci. Hungar. 16, 447–452.

    Google Scholar 

  3. B. Bollobás (1986)Combinatorics, Cambridge Univ. Press.

  4. G. B. Brightwell, H. A. Kierstead, A. V. Kostochka and W. T. Trotter (1993) The dimension of suborders of the Boolean lattice.

  5. B. Dushnik (1950) Concerning a certain set of arrangements,Proc. Amer. Math. Soc. 1, 788–796.

    Google Scholar 

  6. P. Erdös, C. Ko and R. Rado (1961) Intersection theorems for systems of finite sets,Quart. J. Math. Oxford 12(2), 313–320.

    Google Scholar 

  7. P. Frankl (1982) An extremal problem for two families of sets,Europ. J. Combin. 3, 125–127.

    Google Scholar 

  8. P. Frankl and Z. Füredi (1986) Non-trivial intersecting families,J. Combin. Th., Ser. A 41, 150–153.

    Google Scholar 

  9. Z. Füredi, Cross-intersecting families of finite sets,J. Combin. Th., Ser. A, submitted.

  10. Z. Füredi, P. Hajnal, V. Rödl and W. T. Trotter (1992) Interval orders and shift graphs, in A. Hajnal and V. T. Sos (eds),Sets, Graphs and Numbers, Proc. Colloq. Math. Soc. János Bolyai, vol 60, Budapest, Hungary, 1991, North-Holland, Amsterdam, pp. 297–313.

    Google Scholar 

  11. Z. Füredi and J. Kahn (1986) On the dimensions of ordered sets of bounded degree,Order 3, 15–20.

    Google Scholar 

  12. A. J. W. Hilton and E. C. Milner (1967) Some intersection theorems for systems of finite sets,Quart. J. Math. Oxford 18(2), 369–384.

    Google Scholar 

  13. G. Hurlbert, On dimension in the cube,Discrete Mathematics, to appear.

  14. G. Hurlbert, A. V. Kostochka and L. A. Talysheva (1993) On the dimension ofP n(2,r) for larger, Manuscript.

  15. G. Kalai (1984) Intersection patterns of convex sets,Israel J. Math. 48, 161–174.

    Google Scholar 

  16. G. O. H. Katona (1968) A theorem on finite sets, in P. Erdöset al. (eds),Theory of Graphs, Proc. Colloq., Tihany, Hungary, 1966, Akadémiai Kiadó, Budapest and Academic Press, New York, pp. 187–207.

    Google Scholar 

  17. J. B. Kruskal (1963) The number of simplices in a complex, in R. Bellmann (ed.),Mathematical Optimization Techniques, Univ. California Press, Berkeley, pp. 251–278.

    Google Scholar 

  18. L. Lovász (1978) Kneser's conjecture, chromatic number and homotopy,J. Combin. Th., Ser. A 25, 319–324.

    Google Scholar 

  19. J. Spencer (1972) Minimal scrambling sets of simple orders,Acta Math. Hungar. 22, 349–353.

    Google Scholar 

  20. W. T. Trotter (1991)Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Rival

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füredi, Z. The order dimension of two levels of the Boolean lattice. Order 11, 15–28 (1994). https://doi.org/10.1007/BF01462226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01462226

Mathematics Subject Classifications (1991)

Key words

Navigation