Skip to main content
Log in

A Framework for the Systematic Determination of the Posets on n Points with at Least τ ⋅ 2n Downsets

  • Published:
Order Aims and scope Submit manuscript

Abstract

A structural framework is presented which allows the systematic determination of all non-isomorphic posets on n points with at least τ ⋅ 2n downsets, or - equivalently - of all T0-topologies on n points with at least τ ⋅ 2n open sets. The framework is developed by defining the type of a special extension of posets and by defining a partial order on these types. It is shown that this partial order is strictly antitone to the number of downsets of so called simple extensions; additionally the downset number of a simple extension is the maximum of the downset numbers of all extensions having the same type as the simple extension. For non-simple extensions of an important type it is shown that the number of their downsets is ruled by a simple sub-extension contained in them. The approach is used to determine all non-isomorphic posets with at least \( \frac {1}{4} \cdot 2^{n}\) downsets. Finally, a result of Vollert about the structure of downset numbers is refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M.: Kombinatorik I. Grundlagen und Zähltheorie. Springer-Verlag, Berlin (1975)

    MATH  Google Scholar 

  2. Alexandroff, P.: Sur les espaces discrets. Comptes Rendus de l’Académie des Sciences 200, 1469–1471 (1935)

    MATH  Google Scholar 

  3. Alexandroff, P.: Diskrete Räume. Mat. Sb. (N.S.) 2, 501–518 (1937)

    MATH  Google Scholar 

  4. Benoumhani, M.: The number of topologies on a finite set. J. Integer Seq. 9, Article 06.2.6 (2006)

  5. Benoumhani, M., Kolli, M.: Finite topologies and partitions. J. Integer Seq. 13, Article 10.3.5 (2010)

  6. Birkhoff, G.: Lattice Theory, 3rd edn., vol. 25. Proc. Amer. Math. Soc. Coll Publ., Providence (1973)

  7. Brinkmann, G., McKay, B. D.: Posets on up to 16 Points. Order 19, 147–179 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brinkmann, G., McKay, B. D.: Counting unlabelled topologies and transitive relations. J. Integer Seq. 8, Article 05.2.1 (2005)

  9. Butler, K. K. -H.: The number of partially ordered sets. J. Combin. Theory (B) 13, 276–289 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Butler, K. K. -H., Markowsky, G.: Enumeration of finite topologies. In: Proc. 4th Southeastern Conf. on Combinatorics Graph Theory and Computing, pp. 169–184. Winnipeg (1973)

  11. a Campo, F., Erné, M.: Exponential functions of finite posets and the number of extensions with a fixed set of minimal points. To appear in J. Combin. Math. Combin. Comput.

  12. Culberson, J. C., Rawlins, J. E.: New results from an algorithm for counting posets. Order 7, 361–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erné, M.: Struktur- und Anzahlformeln für Topologien auf endlichen Mengen. Westfälische Wilhelms-Universität zu Münster, PhD Dissertation (1972)

    MATH  Google Scholar 

  14. Erné, M: Struktur- und Anzahlformeln für Topologien auf endlichen Mengen. Manuscripta Math. 11, 221–259 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erné, M.: On the cardinalities of finite topologies and the number of Antichains in partially ordered sets. Discrete Math. 35, 119–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erné, M.: The number of partially ordered sets with more points than incomparable pairs. Discrete Math. 105, 49–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices. Electron. J. Comb. 9, #R24 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Erné, M., Stege, K.: Counting finite posets and topologies. Order 8, 247–265 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erné, M., Stege, K.: Combinatorial applications of ordinal sum decompositions. Ars Combinatoria 40, 65–88 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Heitzig, J., Reinhold, J.: The number of unlabeled orders on fourteen elements. Order 17, 333–341 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heitzig, J., Reinhold, J.: Counting finite lattices. Algebra Universalis 48, 43–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolli, M.: Direct and elementary approach to enumerate topologies on a finite set. J. Integer Seq. 10, Article 07.3.1 (2007)

  23. Kolli, M.: On the cardinality of the T 0-topologies on a finite set. Intern. J. of Combin., Article ID 798074. (2014) https://doi.org/10.1155/2014/798074

  24. Parchmann, R.: On the cardinalities of finite topologies. Discrete Math. 11, 161–172 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pfeiffer, G.: Counting transitive relations. J. Integer Seq., 7 (2004), Article 04.3.2

  26. Ragnarsson, K., Tenner, B. E.: Obtainable sizes of topologies on finite sets. J. Combin. Theory (A) 117, 138–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharp, H.: Quasi-orderings and topologies on finite sets. Proc. Amer. Math. Soc. 17, 1344–1349 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sharp, H.: Cardinality of finite topologies. J. Combin. Theory 5, 82–86 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stanley, R. P.: On the number of open sets of finite topologies. J. Combin. Theory (A) 10, 74–79 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stanley, R. P.: Ordered Structures and Partitions. PhD thesis, Harvard (1971)

    Google Scholar 

  31. Stanley, R. P.: Ordered structures and partitions memoirs of the AMS (1972)

  32. Stanley, R. P.: Enumerative combinatorics, 2nd edn, vol. I. Cambridge University Press (2012)

  33. Vollert, U.: Mächtigkeiten von Topologien auf endlichen Mengen und Cliquenzahlen in endlichen Graphen. University of Hannover, PhD Thesis (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Marcel Erné and to the anonymous reviewer #2 of this paper for their useful hints and recommendations in writing and improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank a Campo.

Appendix

Appendix

Fig. 7
figure 7

Admissible extensions RE(P, m) with PZ(k) (cf. Table 1)

Fig. 8
figure 8

Admissible extensions RE(C2 + A,m), ≥ 1 (cf. Table 2). The coding is: type of C2 in R, a = max{ϕ(R) (y) | yY}

Fig. 9
figure 9

Admissible extensions RE(P′ + A, m), P′ ∈ Z(k′), k′ ≥ 3, ≥ 1 (cf. Table 3)

Fig. 10
figure 10

Admissible extensions RE(Ak,m) with km (cf. Table 4). The admissible extensions with k > m are found by turning upside-down the admissible extensions found in E(Am,k)

Fig. 11
figure 11

Non-connected lower extensions R without isolated points with \(\delta (R) \geq \frac {1}{4}\) (cf. Table 5). In order to be consistent with the previous figures, m is in this figure for every extension the number of minimal points of the connectivity component on the right. Each connectivity component can be replaced by its dual

Table 1 The binary representation of the factors of the admissible extensions R ∈ (P, m) with PZ(k) (Fig. 7) and the duals of these extensions
Table 2 The binary representation of the factors of the admissible extensions contained in (C2 + A,m), ≥  1 (Fig. 8) and the duals of these extensions
Table 3 The binary representation of the factors of the admissible extensions contained in 𝓔(P′ + A, m), P′ ∈ Z(k′), k′ ≥ 3, ≥ 3 (Fig. 9) and the duals of these extensions
Table 4 The binary representation of the factors of the admissible extensions contained in (Ak,m) with km (Fig. 10)
Table 5 The binary representation of the factors of the non-connected lower extensions R without isolated points with δ(R) ≥ 1 4 (Fig. 11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

a Campo, F. A Framework for the Systematic Determination of the Posets on n Points with at Least τ ⋅ 2n Downsets. Order 36, 119–157 (2019). https://doi.org/10.1007/s11083-018-9459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-018-9459-2

Keywords

Navigation