Skip to main content
Log in

Enhanced ultra-wideband optical frequency comb generation based on cross-polarization modulation effect of semiconductor optical amplifier

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, an efficient optical frequency comb (OFC) relies on cross polarization modulation (XPolM) in semiconductor optical amplifier (SOA) is proposed. The proposed setup generates ultra flat and broad frequency spectrum which is proficient to generate 103 comb lines with 2.75 dB average power deviation having bandwidth of 516 GHz. The generated comb spectrum has 50, 21, 20 and 12 lines with maximum power deviation 0 dB, 0.4 dB, 2dB and 3dB respectively. The performance of proposed OFC generator is analysed analytically with differential gain, carrier density, injection current, confinement factor, active layer length, width and linewidth enhancement factor of SOA along with its state of polarization (SOP). Also, the state of polarization of obtain OFC is analysed with iterative value of SOA parameter. The proposed optical frequency comb is efficient in field of radio frequency photonics, high speed optical communication, quantum optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Agrawal, G.P.: Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century: Springer, pp. 195–211. (2000)

  • Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEE J. Quantum Electron. 25(11), 2297–2306 (1989)

    Article  ADS  Google Scholar 

  • Bagheri, M., et al.: Passively mode-locked interband cascade optical frequency combs. Sci. Rep. 8(1), 3322 (2018)

    Article  ADS  Google Scholar 

  • Beha, K., Cole, D.C., Del’Haye, P., Coillet, A., Diddams, S.A., Papp, S.B.: Electronic synthesis of light, Optica, vol. 4, no. 4, pp. 406–411, (2017)

  • Chen, C., Zhang, C., Zhang, W., Jin, W., Qiu, K.: Hybrid WDM-OFDMA‐PON utilising tunable generation of flat optical comb. Electron. Lett. 49(4), 276–277 (2013)

    Article  ADS  Google Scholar 

  • Coddington, I., Newbury, N., Swann, W.: Dual-comb spectroscopy, Optica, vol. 3, no. 4, pp. 414–426, (2016)

  • Cundiff, S.T., Ye, J., Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325 (2003)

    Article  ADS  Google Scholar 

  • Diddams, S.A., et al.: An optical clock based on a single trapped 199Hg + ion. Science. 293(5531), 825–828 (2001)

    Article  ADS  Google Scholar 

  • Dong, M., Cundiff, S.T., Winful, H.G.: Physics of frequency-modulated comb generation in quantum-well diode lasers. Phys. Rev. A. 97(5), 053822 (2018)

    Article  ADS  Google Scholar 

  • Fukuchi, Y., Hirata, K., Ikeoka, H.: Wavelength-tunable and bandwidth-variable ultra-flat optical frequency comb block generation from a bismuth-based actively mode-locked fiber laser. IEEE Photonics J. 6(1), 1–9 (2014)

    Article  Google Scholar 

  • Hinkley, N., et al.: An atomic clock with 10–18 instability, Science, vol. 341, no. 6151, pp. 1215–1218, (2013)

  • Ideguchi, T., Holzner, S., Bernhardt, B., Guelachvili, G., Picqué, N., Hänsch, T.W.: Coherent Raman spectro-imaging with laser frequency combs. Nature. 502(7471), 355–358 (2013)

    Article  ADS  Google Scholar 

  • Jerez, B., Martín-Mateos, P., Prior, E., de Dios, C., Acedo, P.: Gain-switching injection-locked dual optical frequency combs: Characterization and optimization. Opt. Lett. 41(18), 4293–4296 (2016)

    Article  ADS  Google Scholar 

  • Jiang, W., Zhao, S., Li, X., Tan, Q.: Optical frequency comb generation based on three parallel Mach–Zehnder modulators with recirculating frequency shifting loop, Optical review, vol. 24, no. 4, pp. 533–539, (2017)

  • Li, B., Shang, L., Lin, G.: Simulation of a flat optical frequency comb using a single-drive multi-RF Mach–Zehnder modulator in a cascaded intensity modulator chain, Optik, vol. 125, no. 19, pp. 5768–5770, (2014)

  • Li, B., Lin, G., Wu, F., Shang, L.: Generation of optical frequency comb with large spectral lines by cascaded dual-parallel modulator and intensity modulators, Optik, vol. 127, no. 18, pp. 7174–7179, (2016)

  • Li, J., Ma, H., Li, Z., Zhang, X.: Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops. IEEE Photonics J. 9(5), 1–10 (2017)

    Google Scholar 

  • Lv, X., Liu, J., Wu, S.: Flat optical frequency comb generation based on polarization modulator with RF frequency multiplication circuit and dual-parallel Mach-Zehnder modulator. Optik. 183, 706–712 (2019)

    Article  ADS  Google Scholar 

  • Marin-Palomo, P., et al.: Microresonator-based solitons for massively parallel coherent optical communications. Nature. 546(7657), 274–279 (2017)

    Article  ADS  Google Scholar 

  • McCracken, R.A., Charsley, J.M., Reid, D.T.: A decade of astrocombs: Recent advances in frequency combs for astronomy. Opt. Express. 25(13), 15058–15078 (2017)

    Article  ADS  Google Scholar 

  • Mizrahi, J., et al.: Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B. 114, 45–61 (2014)

    Article  ADS  Google Scholar 

  • Newbury, N.R.: Searching for applications with a fine-tooth comb. Nat. Photonics. 5(4), 186–188 (2011)

    Article  ADS  Google Scholar 

  • Papp, S.B., et al.: Microresonator frequency comb optical clock. Optica. 1(1), pp10–14 (2014)

    Article  ADS  Google Scholar 

  • Porat, G., et al.: Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photonics. 12(7), 387–391 (2018)

    Article  ADS  Google Scholar 

  • Premaratne, M., Agrawal, G.P.: Light Propagation in gain Media: Optical Amplifiers. Cambridge University Press (2011)

  • Roiz, M., Kumar, K., Karhu, J., Vainio, M.: Simple method for mid-infrared optical frequency comb generation with dynamic offset frequency tuning. Apl Photonics, 6, 2, (2021)

  • Sarojini, R., Selvendran, S.: Cross polarization modulation based wavelength conversion with very low pump power in SOA: An investigation. Optik. 185, 852–858 (2019)

    Article  Google Scholar 

  • Schliesser, A., Picqué, N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics. 6(7), 440–449 (2012)

    Article  ADS  Google Scholar 

  • Tang, J., Sun, J., Zhao, L., Chen, T., Huang, T., Zhou, Y.: Tunable multiwavelength generation based on Brillouin-Erbium comb fiber laser assisted by multiple four-wave mixing processes. Opt. Express. 19(15), 14682–14689 (2011)

    Article  ADS  Google Scholar 

  • Tian, F., et al.: Theoretical analysis of high-quality multicarrier generator based on double complementary re-circulating frequency shifter. Opt. Commun. 445, 222–230 (2019)

    Article  ADS  Google Scholar 

  • Ullah, R., et al.: Application of optical frequency comb generation with controlled delay circuit for managing the high capacity network system. AEU-International J. Electron. Commun. 94, 322–331 (2018)

    Article  Google Scholar 

  • Ullah, S., et al.: Ultra-wide and flattened optical frequency comb generation based on cascaded phase modulator and LiNbO3-MZM offering terahertz bandwidth. IEEE Access. 8, 76692–76699 (2020)

    Article  Google Scholar 

  • Verma, P., Singh, S.: Optical Frequency Comb Generation by using Higher Order Susceptibility in SOA, in 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), 2023: IEEE, pp. 1–4. (2023)

  • Wu, T.-H., et al.: Visible-to-ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. Nat. Photonics pp. 1–6, (2024)

  • Zhang, H., et al.: Coherent optical frequency combs: From principles to applications. J. Electron. Sci. Technol. 20(2), 100157 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Science and Engineering Research Board (SERB), New Delhi for their funding to research project no. SRG/2023/001522. One of the author Ms. Priyanka Verma is thankful to the authorities of NSUT, New Delhi to provide research fellowship and facilities.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Sukhbir Singh and Er. Priyanka Verma has equal contribution to write main manuscript, prepare figure, table and all authors has reviewed the manuscript.

Corresponding author

Correspondence to Sukhbir Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Singh, S. Enhanced ultra-wideband optical frequency comb generation based on cross-polarization modulation effect of semiconductor optical amplifier. Opt Quant Electron 56, 1043 (2024). https://doi.org/10.1007/s11082-024-07017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-07017-y

Keywords

Navigation