Skip to main content
Log in

New design of all-optical multi-channel wavelength division multiplexer based on 2D PC waveguide structures with square rods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A new all-optical multi-channel wavelength division multiplexer (WDM) based on a two-dimensional photonic crystal (2D PC) waveguide structure with square rods, which has the output flat-top bands was proposed. The bandpass WDM creates an appropriate folded structure that possesses resonance frequencies with the flap-top output bands, high transmission efficiency and less crosstalk within the photonic crystal bandgap region. This numerical results show that the proposed PC multi-channel WDM can filter out certain wavelengths in the optical communication region with flat-top output bands. This performance of the proposed PC waveguide structure does not affect by external environment factors because of the flap-top output bands. We proposed the seven-channel PC WDM optical waveguide structure and it also achieves the CWDM specifications which are defined by ITU-T Recommendation G. 649.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    Article  ADS  Google Scholar 

  • Akahane, Y., Asano, T., Song, B.S., Noda, S.: Fine-tuned high-Q photonic—crystal nanocavity. Opt. Express 13, 1202–1214 (2005)

    Article  ADS  Google Scholar 

  • Banaei, H.A., Rostami, A.: A novel proposal for passive all-optical demultiplexer for dwdm systems using 2-D photonic crystals. J. Electromagn. Waves Appl. 22(4), 471–482 (2008). https://doi.org/10.1163/156939308784150263

    Article  ADS  Google Scholar 

  • Chen, C., Li, X., Li, H., Xu, K., Wu, J., Lin, J.: Bandpass filter based on phase-shifted photonic crystal waveguide gratings. Opt. Express 15, 11278–11284 (2007)

    Article  ADS  Google Scholar 

  • Clementi, M., Barone, A., Fromherz, T., Gerace, D., Galli, M.: Selective tuning of optical modes in a silicon comb-like photonic crystal cavity. Nanophotonics 9, 205–210 (2019)

    Article  Google Scholar 

  • Dujaili, M.J.A., Abed, N.H.: Design a photonic crystal narrowband band pass filter at a wavelength of 1570 nm for fiber optic communication applications. Wireless Pers. Commun. 131, 877–886 (2023)

    Article  Google Scholar 

  • Fei, H.-M., Wu, M., Xu, T., Lin, H., Yang, Y.-B., et al.: A broadband polarization-insensitive onchip reciprocal asymmetric transmission device based on generalized total reflection principle. J. Opt. 9, 095004 (2018)

    Article  ADS  Google Scholar 

  • Fei, H.-M., Wu, M., Lin, H., Liu, X., Yang, Y.-B., et al.: An on-chip nanophotonic reciprocal optical diode for asymmetric transmission of the circularly polarized light. Superlatt. Microstruct. 132, 106155 (2019)

    Article  Google Scholar 

  • Fei, H.-M., Wu, M., Lin, H., Yang, Y.-B., Liu, X., et al.: A highly efficient asymmetric transmission device for arbitrary linearly polarized light. Photon. Nanostruct. 41, 100829 (2020a)

    Article  Google Scholar 

  • Fei, H.-M., Yan, S., Wu, M., Lin, H., Yang, Y.-B., et al.: Photonic crystal with 2-fold rotational symmetry for highly efficient asymmetric transmission. Opt. Commun. 477, 126346 (2020b)

    Article  Google Scholar 

  • Fei, H.-M., Zhang, Q., Wu, M., Lin, H., Liu, X., et al.: Asymmetric transmission of light waves in a photonic crystal waveguide heterostructure with complete bandgaps. Appl. Opt. 59, 4416–4421 (2020c)

    Article  ADS  Google Scholar 

  • Florous, N.J., Saitoh, K., Koshiba, M.: Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology. Opt. Lett. 30(20), 2736–2738 (2005)

    Article  ADS  Google Scholar 

  • Haus, H.A.: Wave and field in optoelectronics. Prentice-Hall, Englewood Cliff, NJ (1984)

    Google Scholar 

  • Horst, F., Green, W.M.J., Assefa, S., Shank, S.M., Vlasov, Y.A., Offrein, B.J.: Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Experss. 21, 11652–11658 (2013)

    Article  ADS  Google Scholar 

  • Jervakani, A.T., Darki, B.S.: An ultracompact optical polarizer based on the one-dimensional photonic crystals containing anisotropic layers. Opt. Commun. 526, 128884 (2023)

    Article  Google Scholar 

  • John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phy. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  • Kim, S., Park, I., Lim, H.: Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback. Opt. Express 12, 5518–5525 (2004)

    Article  ADS  Google Scholar 

  • Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol. 19, 1970–1975 (2001)

    Article  ADS  Google Scholar 

  • Kuo, C.W., Chang, C.F., Chen, M.H., Chen, S.Y., Wu, Y.D.: A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures. Opt. Express 15, 198–206 (2007)

    Article  ADS  Google Scholar 

  • Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324–328 (2015)

    Google Scholar 

  • Niemi, T., Frandsen, H.F., Hede, K.K., Anders, H., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technol. Lett. 18, 226–228 (2016)

    Article  ADS  Google Scholar 

  • Noda, S., Chutinan, A., Imada, M.: Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000)

    Article  ADS  Google Scholar 

  • Olivier, S., Smith, C., Rattier, M., Benisty, H., Weisbuch, C., Krauss, T., Houdré, R., Oesterlé, U.: Miniband transmission in a photonic crystal coupled-resonator optical waveguide. Opt. Lett. 26(13), 1019 (2001). https://doi.org/10.1364/OL.26.001019

    Article  ADS  Google Scholar 

  • Painter, O., Vučkovič, J., Scherer, A.: Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. J. Opt. Soc. Am. B 16(2), 275 (1999). https://doi.org/10.1364/JOSAB.16.000275

    Article  ADS  Google Scholar 

  • Radhouene, M., Najjar, M., Chhipa, M., Robinson, S., Suthar, B.: Performance optimization of six channels WDM demultiplexer based on photonic crystal structure. J. Ovonic Res. 13, 291–297 (2017)

    Google Scholar 

  • Ren, H., Jian, C., Weisheng, Hu., Gao, M., Gao, J., Wangm, J.: Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity. Opt. Express 14, 2446–2458 (2006)

    Article  ADS  Google Scholar 

  • Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  ADS  Google Scholar 

  • Scheuer, J., Paloczi, G.T., Poon, J.K.S., Yariv, A.: Coupled resonator optical waveguides: toward the slowing and storage of light. Opt. Photon. News 16, 36–40 (2005)

    Article  Google Scholar 

  • Shih, T.T., Wu, Y.D., Lee, J.J.: Proposal for compact optical triplexer filter using 2-D photonic crystals. IEEE Photonics Technol. Lett. 21, 18–20 (2009a)

    Article  ADS  Google Scholar 

  • Shih, T.T., Wu, Y.D., Lee, J.J.: Proposal for compact optical triplexer filter using 2-D photonic crystals. IEEE Photon. Technol. Lett. 21(1), 18–20 (2009b)

    Article  ADS  Google Scholar 

  • Soljacic, Marin, et al. Mach-Zehnder interferometer using photonic band gap crystals. U.S. Patent No. 6,917,431, (2005)

  • Song, J.H., Lee, K.S., Yunkyung, O.: Triple wavelength demultiplexers for low-cost optical triplexer transceivers. J. Lightwave Technol. 25(1), 350–358 (2007). https://doi.org/10.1109/JLT.2006.886714

    Article  ADS  Google Scholar 

  • Sugimoto, Y., Ikeda, N., Carlsson, N., Asakawa, K., Kawai, N., Inoue, K.: AlGaAs-based two-dimensional photonic crystal slab with defect waveguides for planar lightwave circuit applications. IEEE J. Quantum Electron. 38(7), 760–769 (2002). https://doi.org/10.1109/JQE.2002.1017586

    Article  ADS  Google Scholar 

  • Tajima, K., Zhou, J., Nakajima, K., Sato, K.: Ultralow loss and long length photonic crystal fiber. J. Lightwave Technol. 22(1), 7–10 (2004). https://doi.org/10.1109/JLT.2003.822143

    Article  ADS  Google Scholar 

  • Wang, J., Sheng, Z., Li, L., Pang, A., Wu, A.-M., et al.: Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express 22, 9395–9403 (2014)

    Article  ADS  Google Scholar 

  • Wu, Y.D.: New design of all-optical slow light tdm structure based on photonic crystals. Progress Electromagn. Res. 146, 89–97 (2014)

    Article  Google Scholar 

  • Wu, Y.D., Hsu, K.W., Shih, T.T.: 32-channels dense-wavelength-division multiplexer based on cascade two-dimensional photonic crystals waveguide structure. J. Opt. Soc. Am. B 24, 2075–2080 (2007)

    Article  ADS  Google Scholar 

  • Wu, M., Fei, H.-M., Lin, H., Zhao, X.-D., Yang, Y.-B., et al.: A hexagonal boron nitride super selfcollimator for optical asymmetric transmission in the visible region. Opt. Mater. 112, 110483 (2021)

    Article  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physica and electronics. Phy. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  • Yaw-Dong, W., Hsu, K.-W., Shih, T.-T., Lee, J.-J.: New design of four-channel add-drop filters based on double-resonant cavity photonic crystals. J. Opt. Soc. Am. B 26(4), 640 (2009). https://doi.org/10.1364/JOSAB.26.000640

    Article  ADS  Google Scholar 

  • Yu, S., Koo, S., Park, N.: Coded output photonic A/D converter based on photonic crystal slow-light structures. Opt. Express 16, 13752–13757 (2008)

    Article  ADS  Google Scholar 

  • Zhang, Y., Yang, S., Yang, Y., Gould, M., Ophir, N., Lim, A.E.-J., Lo, G.-Q., Magill, P., Bergman, K., Baehr-Jones, T., Hochberg, M.: A high-responsivity photodetector absent metal-germanium direct contact. Opt. Express 22(9), 11367 (2014). https://doi.org/10.1364/OE.22.011367

    Article  ADS  Google Scholar 

  • Zimmermann, J., Kamp, M., Forchel, A., Marz, R.: Photonic crystal waveguide directional couplers as wavelength selective optical filters. Opt. Commun. 38, 387–392 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jhong-Yan Jin for his constructive comments and help.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, writing—review and editing Y.-D.W.; software, Y.-J.X. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yaw-Dong Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YD., Xu, YJ. New design of all-optical multi-channel wavelength division multiplexer based on 2D PC waveguide structures with square rods. Opt Quant Electron 56, 1062 (2024). https://doi.org/10.1007/s11082-024-07007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-07007-0

Keywords

Navigation