Skip to main content
Log in

Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. This is an important subject because of its implications for comprehending intricate mathematical models describing traveling wave phenomena and solitons. The construction of traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main issue addressed in the study. The modified auxiliary equation approach and the extended \((\frac{G'}{G^{2}})\)-expansion method are used to address this because they are effective in producing precise solutions of a large class of nonlinear partial differential equations. A visual component to comprehending the behavior of the equation is added by employing 3D-surface graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety of traveling wave behavior is observed from the obtained solutions. These results imply that the Vakhnenko-Parkes equation and its solutions are complex, offering important insights into the underlying dynamics. The proposed techniques are applied for the first time to study the considered model in this work. A comparison of the obtained results with the previous works is presented to confirm the significance and novelty of the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability and materials

There is no data set need to be accessed.

References

  • Akbar, M.A., Abdullah, F.A., Islam, M.T., Sharif, M.A.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Zainab, I.: The dynamical study of Biswas-Arshed equation via modified auxiliary equation method. Optik-Int. J. Light Electron Opt. 255, 168614 (2022)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Arshed, S., Ejaz, U.: Travelling wave solutions and modulation instability analysis of the nonlinear Manakov-system. J. Taibah Univ. Sci. 17(1), 2201967 (2023)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Khan, M.A.U.: Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Arshed, S., Latif, R., Inc, M., Alzaidi, A.S.M.: Exact traveling wave solutions of (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation using extended trial equation method and modified auxiliary equation method. Opt. Quantum Electron. 56, 424 (2024)

    Article  Google Scholar 

  • Arshed, S., Sadaf, M., Akram, G., Yasin, M.M.: Analysis of Sasa-Satsuma equation with beta fractional derivative using extended \(\frac{G^{\prime }}{G^{2}}\) expansion technique and extended \((exp(-\phi (\xi )))\)-expansion technique. Optik- Int. J. Light Electron Opt. 271, 170087 (2022)

    Article  Google Scholar 

  • Behera, S., Aljahdaly, N.H., Virdi, J.P.S.: On the modified \(\frac{G^{\prime }}{G^{2}}\)-expansion method for finding some analytical solutions of the traveling waves. J. Ocean Eng. Sci. 7, 313–320 (2022)

    Article  Google Scholar 

  • Duran, S.: An investigation of the physical dynamics of a traveling wave solution called a bright soliton. Phys. Scr. 96(12), 125251 (2021)

    Article  ADS  Google Scholar 

  • Duran, S.: Dynamic interaction of behaviors of time-fractional shallow water wave equation system. Mod. Phys. Lett. B 35(22), 2150353 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Duran, S., Askin, M., Sulaiman, T.A.: New soliton properties to the ill-posed Boussinesq equation arisingin nonlinear physical science. An Int. J. Opt. Control: Theor. & Appl. 7(3), 240–247 (2017)

    Google Scholar 

  • Duran, S., Yokus, A., Kilinc, G.: A study on solitary wave solutions for the Zoomeron equation supported by two-dimensional dynamics. Phys. Scr. 98, 125265 (2023)

    Article  ADS  Google Scholar 

  • Ebaid, A., Aly, E.H.: Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion 49(2), 296–308 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Foyjonnesa, I.R., Shahen, N.H.M., Rahman, M.M.: Dispersive solitary wave structures with MI analysis to the unidirectional DGH equation via the unified method. Partial Differ. Equ. Appl. Math. 6, 100444 (2022)

    Article  Google Scholar 

  • Foyjonnesa, I.R., Shahen, N.H.M., Rahman, M.M., Alshomrani, A.S., Inc, M.: On fractional order computational solutions of low-pass electrical transmission line model with the sense of conformable derivative. Alex. Eng. J. 81, 87–100 (2023)

    Article  Google Scholar 

  • Ibrahim, I.A., Taha, W.M., Noorani, M.S.M.: Homogenous balance method for solving exact solutions of the nonlinear Benny-Luke equation and Vakhnenko-Parkes equation. ZANCO J. Pure Appl. Sci. 31, 52–56 (2019)

    Google Scholar 

  • Iqbal, M.A., Miah, M.M., Ali, H.M.S., Shahen, N.H.M., Deifalla, A.: New applications of the fractional derivative to extract abundant soliton solutions of the fractional order PDEs in mathematics physics. Partial Differ. Equ. Appl. Math. 9, 100597 (2024)

    Article  Google Scholar 

  • Islam, M.T., Akbar, M.A., Azad, M.A.K.: The exact traveling wave solutions to the nonlinear space-time fractional modified Benjamin-Bona-Mahony equation. J. Mech. Contin. Math. Sci. 13(2), 56–71 (2018)

    Google Scholar 

  • Islam, M.T., Akter, M.A., Azad, M.A.K.: Closed-form traveling wave solutions to the nonlinear space-time fractional coupled Burgers’ equation. Arab J. Basic Appl. Sci. 26(1), 1–11 (2019)

    Article  Google Scholar 

  • Islam, M.T., Akbar, M.A., Aguilar, J.F.G., Bonyah, E., Anaya, G.F.: Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations. J. Ocean Eng. Sci. 7, 528–535 (2022)

    Article  Google Scholar 

  • Islam, M.T., Akter, M.A., Aguilar, J.F.G., Akbar, M.A.: Novel and diverse soliton constructions for nonlinear space-time fractional modified Camassa-Holm equation and Schrodinger equation. Optical Quantum Electron. 54(4), 227 (2022)

    Article  Google Scholar 

  • Islam, M.T., Akbar, M.A., Ahmad, H., Ilhan, O.A., Gepreel, K.A.: Diverse and novel soliton structures of coupled nonlinear schrödinger type equations through two competent techniques. Mod. Phys. Lett. B 36(11), 2250004 (2022)

    Article  ADS  Google Scholar 

  • Islam, M.T., Sarkar, T.R., Abdullah, F.A., Aguilar, J.F.G.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti-Leon-Manna-Pempinelli model. Phys. Scr. 98, 085230 (2023)

    Article  ADS  Google Scholar 

  • Islam, M.T., Ryehan, S., Abdullah, F.A., Aguilar, J.F.G.: The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik 287, 171140 (2023)

    Article  ADS  Google Scholar 

  • Justin, M., David, V., Shahen, N.H.M., Sylvere, A.S., Rezazadeh, H., Inc, M., Betchewe, G., Doka, S.Y.: Sundry optical solitons and modulational instability in Sasa-Satsuma model. Opt. Quantum Electron. 54, 81 (2022)

    Article  Google Scholar 

  • Khater, M.M., Muhammad, S., Ghamdi, A.A., Higazy, M.: Novel soliton wave solutions of the Vakhnenko-Parkes equation arising in the relaxation medium. J. Ocean Eng. Sci. (2022)

  • Kumar, S., Mann, N.: Abundant closed-form solutions of the \((3+1)\)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. J. Ocean Eng. Sci. (2022)

  • Kumar, S., Mann, N.: Abundant closed-form solutions of the \((3+1)\)-dimensional Vakhnenko-Parkes equation describing the dynamics of various solitary waves in ocean engineering. J. Ocean Eng. Sci. 17, 32 (2022)

    Google Scholar 

  • Ma, W.X.: A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 9, 1711–1718 (2019)

    Article  MathSciNet  Google Scholar 

  • Mamun, A.A., An, T., Shahen, N.H.M., Ananna, S.N., Foyjonnesa, I.R., Hossain, M.F., Muazu, T.: Exact and explicit travelling-wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Results Phys. 19, 103517 (2020)

    Article  Google Scholar 

  • Mamun, A.A., Ananna, S.N., An, T., Shahen, N.H.M., Asaduzzaman, M., Foyjonnesa, I.R.: Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 7(8), e07704 (2021)

    Article  Google Scholar 

  • Mamun, A.A., Shahen, N.H.M., Ananna, S.N., Asaduzzaman, M., Foyjonnesa, I.R.: Solitary and periodic wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Heliyon 7(7), e07483 (2021)

    Article  Google Scholar 

  • Mamun, A.A., Ananna, S.N., An, T., Shahen, N.H.M., Foyjonnesa, I.R.: Periodic and solitary wave solutions to a family of new 3D fractional WBBM equations using the two-variable method. Partial Differ. Equ. Appl. Math. 3, 100033 (2021)

    Article  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Biswas, A.: Dispersive optical solitons by Kudryashos method. Optik-Int. J. Light Electron Opt. 125, 6874–6880 (2014)

    Article  Google Scholar 

  • Ozisik, M., Onder, I., Esen, H., Cinar, M., Ozdemir, N., Secer, A., Bayram, M.: On the investigation of optical soliton solutions of cubic-quartic fokas-lenells and schrdinger-hirota equations. Optik- Int. J. Light Electron Optics 272, 170389 (2023)

    Article  Google Scholar 

  • Roshid, H.-O., Kabir, M.R., Bhowmik, R.C., Datta, B.K.: Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and \(\exp (-\phi (\xi ))\)-expansion method. SpringerPlus 3, 692 (2014)

    Article  Google Scholar 

  • Roshid, H.O., Kabir, M.R., Bhowmik, R.S., Datta, B.K.: Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and \(exp(-\phi (\xi ))\)-expansion method. SpringerPlus 3, 692 (2014)

    Article  Google Scholar 

  • Shahen, N.H.M., Foyjonnesa, I.R., Ali, M.S., Mamun, A.A., Rahman, M.M.: Interaction among lump, periodic, and kink solutions with dynamical analysis to the conformable time-fractional phi-four equation. Partial Differ. Equ. Appl. Math. 4, 100038 (2021)

    Article  Google Scholar 

  • Shahen, N.H.M., Foyjonnesa, I.R., Bashar, M.H., Tahseen, T., Hossain, S.: Solitary and rogue wave solutions to the conformable time fractional modified Kawahara equation in mathematical physics. Adv. Math. Phys. 2021, 6668092 (2021)

    Article  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: The integrable Vakhnenko-Parkes VP and the modified Vakhnenko-Parkes MVP equations: Multiple real and complex soliton solutions. Chin. J. Phys. 57, 375–381 (2019)

    Article  Google Scholar 

  • Wazwaz, A.M.: The integrable Vakhnenko-Parkes (vp) and the modified Vakhnenko Parkes (mvp) equations: Multiple real and complex soliton solutions. Chin. J. Phys. 57, 375–381 (2019)

    Article  Google Scholar 

  • Yel, G., Aktürk, T.: Application of the modified exponential function method to Vakhnenko-Parkes equation. Math. Nat. Sci. 6, 8–14 (2020)

    Article  Google Scholar 

  • Yokuş, A., Durur, H., Duran, S., Islam, M.T.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math. 41, 174 (2022)

    Article  MathSciNet  Google Scholar 

  • Yusufoglu, E., Bekir, A.: A travelling wave solution to the Ostrovsky equation. Appl. Math. Comput. 186(5), 256–260 (2007)

    MathSciNet  Google Scholar 

  • Zuo, D., Zhang, G.: Exact solutions of the nonlocal Hirota equations. Appl. Math. Lett. 93, 66–71 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TUDSPP-2024-257). The authors are also grateful to anonymous referees for their valuable suggestions, which significantly improved this manuscript.

Funding

This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-257).

Author information

Authors and Affiliations

Authors

Contributions

SA: Methodology, Writing original draft. GA: Supervision, Methodology, Writing review & editing. MS: Methodology, Writing original draft, Formal analysis. EH: Software, Investigation, Visualization, Writing original draft. MA: Methodology, Writing review & editing. ASMA: Formal analysis, Writing original draft. MBR: Visualization, Software, Investigation, Validation, Writing review & editing. All of the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Muhammad Abbas or Ahmed S. M. Alzaidi.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshed, S., Akram, G., Sadaf, M. et al. Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes. Opt Quant Electron 56, 1072 (2024). https://doi.org/10.1007/s11082-024-06953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06953-z

Keywords

Mathematics Subject Classification

Navigation