Skip to main content
Log in

Birefringence modes of surface plasmon polariton at the interface of chiral and gold media

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present a theoretical approach based on the density matrix formulation to investigate birefringence modes of surface plasmon polariton at the interface of chiral and gold media. The birefringence modes of surface plasmon polariton in the absorption and dispersion spectrums is controlled with probe field detuning. Furthermore, the propagation length/phase shift and the fractional change in the propagation length/phase shift in birefringence beams of surface plasmon polaritons are calculated and controlled under the same conditions. The possibility of birefringence modes of surface plasmon polariton may result into new imaging and compact nano-photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Akbar, J., Khan, A., Abdul, M., Hou, L.: Manipulation of surface plasmon polariton fields excitation at quantum-size slit in a dielectric and graphene interface. Opt. Laser Technol. 170, 110234 (2024)

    Article  Google Scholar 

  • Atwater, H.A.: The promise of plasmonics. Sci. Am. 296, 56–63 (2007)

    Article  Google Scholar 

  • Bacha, B.A., et al.: The hybrid mode propagation of surface plasmon polaritons at the interface of graphene and a chiral medium. Eur. Phys. J. Plus 133(12), 509 (2018)

    Article  Google Scholar 

  • Bakhtawar, Haneef, M., Bacha, B.A., Khan, H., Atif, M.: Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect. Chin. Phys. B 27(11), (2018)

  • Barnes, W.L.: Surface plasmon-polariton length scales: a route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 8, S87 (2006)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–30 (2003)

    Article  ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Caloz, C., et al.: Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 47001 (2018)

    Article  Google Scholar 

  • Crampton, K.T., Joly, A.G., Gong, Y., El-Khoury, P.: Spatiotemporal imaging and manipulation of surface plasmons. Nanophotonics (2024). https://doi.org/10.1515/nanoph-2023-0733

    Article  Google Scholar 

  • Cunningham, S.L., Maradudin, A.A., Wallis, R.F.: Effect of a charge layer on the surface-plasmon-polariton dispersion curve. Phys. Rev. B 10(8), 3342 (1974)

    Article  ADS  Google Scholar 

  • Danner, A.J., Tyc, T., Leonhardt, U.: Controlling birefringence in dielectrics. Nat. Photonics 5, 357–359 (2011)

    Article  ADS  Google Scholar 

  • De Boer, J.F., Milner, T.E., Van Gemert, M.J.C., Nelson, J.S.: Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)

    Article  ADS  Google Scholar 

  • Ditlbacher, H., Krenn, J.R., Schider, G., Leitner, A., Aussenegg, F.R.: Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002)

    Article  ADS  Google Scholar 

  • Guan, F., et al.: Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems. J. Phys. Condens. Matter 30(11), 114002 (2018)

    Article  ADS  Google Scholar 

  • Jackson, J.D.: Classical electrodynamics, 3rd edn. John Wiley and Sons, New York and Chichester (1998). https://doi.org/10.11316/butsuri1946.55.7.547

    Google Scholar 

  • Jha, P.K., Yin, X., Zhang, X.: Quantum coherence-assisted propagation of surface plasmon polaritons. Appl. Phys. Lett. 102(9), (2013)

  • Kalluri, D.K.: Principles of electromagnetic waves and materials. CRC Press, Abingdon (2013). https://doi.org/10.1201/b14943

    Google Scholar 

  • Khan, H., Haneef, M.: Birefringence in a chiral medium, via temporal cloaking. Laser Phys. 27(5), 055201 (2017)

    Article  ADS  Google Scholar 

  • Khan, R., et al.: Spectral hole burning of surface plasmon polaritons via soliton waves at the interface of sodium and gold media. Phys. Scr. 94(7), 75403 (2019)

    Article  Google Scholar 

  • Kretschmann, M., Maradudin, A.A.: Band structures of two-dimensional surface-plasmon polaritonic crystals. Phys. Rev. B 66, 245408 (2002)

    Article  ADS  Google Scholar 

  • Kumar, D., Sharma, M., Singh, V.: Surface plasmon resonance implemented silver thin film PCF sensor with multiple-hole microstructure for wide ranged refractive index detection. Mater. Today Proc. 62, 6590–6595 (2022)

    Article  Google Scholar 

  • Lee, H.-I., Gaul, C.: Sign flips, crossovers, and spatial inversions in surface plasmon resonance across a chiral-metal interface. Opt. Lett. 48, 1391–1394 (2023)

    Article  ADS  Google Scholar 

  • Li, F., Fang, A., Wang, M.: Electromagnetic chirality-induced negative refraction via atomic coherence. J. Phys. B At. Mol. Opt. Phys. 42(19), 195505 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Lindell, I., Sihvola, A., Tretyakov, S., Viitanen, A.J.: Electromagnetic Waves in Chiral and Bi-isotropic Media. Artech House, London (1994)

    Google Scholar 

  • Liu, M., et al.: Localized surface plasmon resonance enhanced charge transfer effect in MoO2/ZnSe nanocomposites enabling efficient SERS detection and visible light photocatalytic degradation. Sens. Actuators B Chem. 398, 134688 (2024)

    Article  Google Scholar 

  • Naheed, M., Faryad, M., Mackay, T.G.: Electromagnetic surface waves guided by the planar interface of isotropic chiral materials. JOSA B 36, F1–F8 (2019)

    Article  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 80(311), 189–193 (2006)

    Article  ADS  Google Scholar 

  • Polo, J.A., Jr., Lakhtakia, A.: On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 87–107 (2009)

    ADS  Google Scholar 

  • Polo, J.A., Lakhtakia, A.: Surface electromagnetic waves: a review. Laser Photonics Rev. 5, 234–246 (2011)

    Article  ADS  Google Scholar 

  • Pres, S., et al.: Detection of a plasmon-polariton quantum wave packet. Nat. Phys. 19, 656–662 (2023)

    Article  Google Scholar 

  • Revathi, A.A., Rajeswari, D.: Design of polarization splitter based on dual-core surface plasmon resonance photonic crystal fiber. Eur. Phys. J. D 76, 117 (2022)

    Article  ADS  Google Scholar 

  • Rodrigues, S.P., Cunha, P., Kudtarkar, K., Dede, E.M., Lan, S.: Review of optically active and nonlinear chiral metamaterials. J. Nanophotonics 16, 20901 (2022)

    Article  Google Scholar 

  • Seplveda, B., Lechuga, L.M., Armelles, G.: Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J. Lightwave Technol. 24, 945–955 (2006)

    Article  ADS  Google Scholar 

  • Situ, C., Mooney, M.H., Elliott, C.T., Buijs, J.: Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC, Trends Anal. Chem. 29, 1305–1315 (2010)

    Article  Google Scholar 

  • Suryanarayana, N.K., et al.: Modeling of surface plasmon resonance ARROW waveguide and its sensitivity analysis. Microsyst. Technol. 30, 209–219 (2024). https://doi.org/10.1007/s00542-023-05586-8

    Article  Google Scholar 

  • Szunerits, S., Boukherroub, R.: Plasmonic methods for the study of carbohydrate interactions. Carbohydr. Nanotechnol. 53–77 (2015). https://doi.org/10.1002/9781118860212.ch2

  • Takayama, O., Bogdanov, A.A., Lavrinenko, A.V.: Photonic surface waves on metamaterial interfaces. J. Phys. Condens. Matter 29(46), 463001 (2017)

    Article  ADS  Google Scholar 

  • Ul Haq, I., Khan, R., Zaman, A., Iqbal, M.: Casual relationship of entanglement between birefringence beams of light through chiral medium. J. Opt. 51, 927–936 (2022)

    Article  Google Scholar 

  • Vasa, P., et al.: Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008)

    Article  ADS  Google Scholar 

  • Wang, P., et al.: Terahertz chiral metamaterials enabled by textile manufacturing. Adv. Mater. 34, 2110590 (2022)

    Article  Google Scholar 

  • Yaqoob, M.Z., Ghaffar, A., Alkanhal, M., Rehman, S.U., Razzaz, F.: Hybrid surface plasmon polariton wave generation and modulation by chiral-graphene-metal (CGM) structure. Sci. Rep. 8, 18029 (2018)

    Article  ADS  Google Scholar 

  • Yaqoob, M.Z., Ghaffar, A., Alkanhal, M., Rehman, S.U.: Characteristics of light-plasmon coupling on chiral-graphene interface. JOSA B 36, 90–95 (2019)

    Article  ADS  Google Scholar 

  • Zhang, J., Zhang, L., Xu, W.: Surface plasmon polaritons: physics and applications. J. Phys. D Appl. Phys. 45, 113001 (2012)

    Article  ADS  Google Scholar 

  • Zhang, Q., Li, J., Liu, X.: Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers. Phys. Chem. Chem. Phys. 21, 1308–1314 (2019)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in this article. The manuscript is written by RK. BAB was our supervisor who guided and helped us in solving mathematical equations and MI contributed in mathematica graph plottings.

Corresponding author

Correspondence to Roidar Khan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(G_2=\Delta _p-\left(\frac{i(\gamma _e+\gamma _1)}{2}+\frac{|\Omega _c|^2}{4(\Delta _p-i\frac{\gamma _b}{2})}\right)\)

\(G_1=\Delta _p-\left(\frac{i\gamma _b}{2}+\frac{|\Omega _c|^2}{4(\Delta _p-i\frac{(\gamma _1+\gamma _e)}{2})}\right)\)

\(B=\mu _0(H+M)\)

\(\alpha _{BB}=\frac{N\mu ^2_{31}{\widetilde{\rho }}^{(0)}_{11}}{\hbar {G}_1}\)

\(\alpha _{EB}=\frac{N\mu _{31}\varrho _{42}|\Omega _c|e^{i(\varphi _1-\varphi _2)}\rho ^{(0)}_{21}e^{i(\varphi _c+\varphi )}}{2\hbar {G}_1(\Delta _p-\frac{i(\gamma _1+\gamma _e)}{2})}\)

\(\alpha _{EE}=\frac{N\varrho ^2_{42}{\widetilde{\rho }}^{(0)}_{22}}{\hbar {G}_2}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Iqbal, M. & Bacha, B.A. Birefringence modes of surface plasmon polariton at the interface of chiral and gold media. Opt Quant Electron 56, 1045 (2024). https://doi.org/10.1007/s11082-024-06883-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06883-w

Keywords

Navigation