Skip to main content
Log in

A comparative study on the axial intensity of some laser beams spreading through human and mouse biological tissues

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Aiming at the Bessel higher-order cosh-Gaussian beam and the Bessel higher-order sinh-Gaussian beam, we investigate their propagation properties through turbulent biological tissues. In this respect, the analytical expression of the considered beams is obtained and developed, based on the extended Huygens-Fresnel integral. By numerical simulation, the axial intensity of these beams for biological tissue types including the intestinal epithelium and deep dermis of the mouse in addition the human upper dermis versus the propagation distance as a function of the variations of the laser beam parameters. The obtained results indicate that the resistance of our beams against turbulent biological tissues increases as the source parameter increases counting the decentered parameter, the beam-order of the considered beams and the beam waist width. The findings show that the intensity distribution of the propagation of these beams occurs more quickly when they pass through the deep dermis of the mouse. The results presented in this paper are significant due to their potential application in determining the deterioration or disruption of biological tissue, medical imaging and medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. U. S Department of Commerce, Washington, DC (1970)

    Google Scholar 

  • Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media, 2nd edn. SPIE, Bellingham, WA, USA (2005)

    Book  Google Scholar 

  • Baykal, Y.: Intensity correlation of collimated Gaussian beams propagating in biological tissues. J. Mod. Opt. 68, 108–115 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Bayraktar, M.: Propagation of partially coherent hyperbolic sinusoidal Gaussian beam in biological tissue. Optik 245, 167741–167748 (2021)

    Article  ADS  Google Scholar 

  • Benzehoua, H., Belafhal, A.: The effects of atmospheric turbulence on the spectral changes of diffracted pulsed hollow higher-order cosh-Gaussian beam. Opt. Quant. Electron. 50, 973–982 (2023a)

    Article  Google Scholar 

  • Benzehoua, H., Saad, F., Belafhal, A.: Spectrum changes of pulsed chirped generalized Hermite cosh-Gaussian beam through turbulent biological tissues. Optik 294, 1–10 (2023b)

    Article  Google Scholar 

  • Chib, S., Belafhal, A.: Analyzing the spreading properties of vortex beam in turbulent biological tissues. Opt. Quant. Electron. 55, 98–116 (2023)

    Article  Google Scholar 

  • Dalil-Essakali, L., Nossir, N., Belafhal, A.: Axial intensity of Bessel higher-order cosh-Gaussian beam propagating in a turbulent atmosphere. Opt. Quant. Electron. 56, 1–15 (2023)

    Google Scholar 

  • De Boer, J.F., Milner, T.E., Van Gemert, M.J., Nelson, J.S.: Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)

    Article  ADS  Google Scholar 

  • Ebrahim, A.A.A., Belafhal, A.: Effect of the turbulent biological tissues on the propagation properties of coherent Laguerre-Gaussian beams. Opt. Quant. Electron. 53, 179–196 (2021)

    Article  Google Scholar 

  • Gao, W.: Changes of polarization of light beams on propagation through tissue. Opt. Commun. 260, 749–754 (2006)

    Article  ADS  Google Scholar 

  • Gao, W., Korotkova, O.: Changes in the state of polarization of a random electro-magnetic beam propagating through tissue. Opt. Commun. 270, 474–478 (2007)

    Article  ADS  Google Scholar 

  • Gbur, G.: Partially coherent beam propagation in atmospheric turbulence. J. Opt. Soc. Am. A 31, 2038–2045 (2014)

    Article  ADS  Google Scholar 

  • Gökçe, M.C., Baykal, Y.: Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence. Opt. Commun. 410, 830–835 (2018a)

    Article  ADS  Google Scholar 

  • Gökçe, M.C., Baykal, Y.: Effects of liver tissue turbulence on propagation of annular beam. Optik 171, 313–318 (2018b)

    Article  ADS  Google Scholar 

  • Gökçe, M.C., Baykal, Y., Ata, Y.: Laser array beam propagation through liver tissue. J. vis. 23, 331–338 (2020)

    Article  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: tables of integrals, series, and product, 5th edn. Academic Press, New York (1994)

    Google Scholar 

  • Hitzenberger, C.K., Götzinger, E., Sticker, M., Pircher, M., Fercher, A.F.: Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9, 780–790 (2001)

    Article  ADS  Google Scholar 

  • Ishimaru, A.: Wave propagation and scattering in random media, vol. 1. Academic Press, New York, NY, USA (1978)

    Google Scholar 

  • Lu, X., Zhu, X., Wang, K., Zhao, C., Cai, Y.: Effects of biological tissues on the propagation properties of anomalous hollow beams. Optik 127, 1842–1847 (2016)

    Article  ADS  Google Scholar 

  • Mallidi, S., Luke, G.P., Emelianov, S.: Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29, 213–221 (2011)

    Article  Google Scholar 

  • Martelli, M.P., Sozzi, G., Hernandez, L., Pettirossi, V., Navarro, A., Conte, D., Falini, B.: Eml-4-Alk rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am. J. Pathol. 174, 661–670 (2009)

    Article  Google Scholar 

  • Meiling, D., Chao, Z., Jinhong, L.: Coherence and polarization properties of laser propagating through biological tissues. J. Photochem. Photobiol. b. 172, 88–94 (2017)

    Article  Google Scholar 

  • Ni, Y., Zhou, Y., Zhou, G., Chen, R.: Characteristics of partially coherent circular flattened Gaussian vortex beams in turbulent biological tissues. Appl. Sci. 9, 969–983 (2019)

    Article  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of generalized Humbert-Gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 1–3 (2021)

    Article  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Effects of weak to moderate atmospheric turbulence on the propagation properties of the Whittaker-Gaussian laser beam. Opt. Quant. Electron. 56, 1–13 (2023a)

    Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Introduction of Bessel higher-order cosh-Gaussian beam and its propagation through a paraxial ABCD optical system. Opt. Quant. Electron. 55, 1–16 (2023b)

    Article  Google Scholar 

  • Saad, F., Belafhal, A.: A theoretical investigation on the propagation properties of hollow Gaussian beams passing through turbulent biological tissues. Optik 141, 72–82 (2017)

    Article  ADS  Google Scholar 

  • Schmitt, J.M., Kumar, G.: Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21, 1310–1312 (1996)

    Article  ADS  Google Scholar 

  • Wu, Y., Zhang, Y., Wang, Q., Hu, Z.: Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue. J. Quant. Spectrosc. Radiat. Transf. 184, 308–315 (2016)

    Article  ADS  Google Scholar 

  • Xie, S., Li, H., Lu, Z.: Overview of tissue optics. Physics 27, 599–604 (1998)

    Google Scholar 

  • Xu, M.: Plum pudding random medium model of biological tissue toward remote microscopy from spectroscopic light scattering. Biomed. Opt. Express 8, 2879–2895 (2017)

    Article  Google Scholar 

  • Xu, M., Alfano, R.R.: Fractal mechanisms of light scattering in biological tissue and cells. Opt. Lett. 22, 3051–3053 (2005)

    Article  ADS  Google Scholar 

  • Yu, L., Zhang, Y.: Beam spreading and wander of partially coherent Lommel-Gaussian beam in turbulent biological tissue. J. Quant. Spectrosc. Radiat. Transf. 217, 315–320 (2018)

    Article  ADS  Google Scholar 

  • Zhang, Y., Zhou, X., Yuan, X.: Performance analysis of sinh-Gaussian vortex beams propagation in turbulent atmosphere. Opt. Commun. 440, 100–105 (2019)

    Article  ADS  Google Scholar 

  • Zhang, H., Cui, Z., Han, Y., Guo, J., Chang, C.: Average intensity and beam quality of Hermite-Gaussian correlated schell-model beams propagating in turbulent biological tissue. Front. Phys. 9, 650537–650546 (2021)

    Article  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Belafhal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Derivation of Eq. (11)

Appendix 1: Derivation of Eq. (11)

The electric field of the BHoChG beam and the BHoShG beam is described by the following equation as (Nossir et al. 2023b; Dalil-Essakali et al. 2023)

$$E\left( {r,\theta ,0} \right) = E_{0} \exp \left( {il\theta } \right)J_{l} \left( {\frac{q\mu }{{\omega_{0} }}r} \right)\exp \left( { - \frac{{r^{2} }}{{\omega_{0}^{2} }}} \right)f^{ \pm } (r)$$
(19)

with \(f^{ + } (r) = ch^{n} \left( {\Omega r^{2} } \right)\) or \(f^{ - } (r) = sh^{n} \left( {\Omega r^{2} } \right)\).

Utilizing the identity explicit formulae of cosh (.) and sinh (.) as (Abramowitz and Stegun 1970)

$$\cosh^{n} \left( {\rho^{2} } \right) = \frac{1}{{2^{n} }}\sum\limits_{s = 0}^{n} {\left( {\begin{array}{*{20}c} n \\ s \\ \end{array} } \right)e^{{a_{sn} \rho^{2} }} }$$
(20)

and

$$\sinh^{n} \left( {\rho^{2} } \right) = \frac{1}{{2^{n} }}\sum\limits_{s = 0}^{n} {\left( { - 1} \right)^{s} \left( {\begin{array}{*{20}c} n \\ s \\ \end{array} } \right)e^{{ - a_{sn} \rho^{2} }} } ,$$
(21)

with \(a_{sn} = 2s - n\) and \(\left( {\begin{array}{*{20}c} n \\ s \\ \end{array} } \right)\) denotes the binomial coefficient.

By employing an integral of the Huygens-Fresnel principal in calculating the formula for a beam intensity propagating in a medium of tissue (Andrews and Phillips 2005)

$$\begin{aligned} \left\langle {I\left( {\vec{\rho },z} \right)} \right\rangle & = \left\langle {E(\vec{\rho },z,t)E^{ * } (\vec{\rho },z,t)} \right\rangle = \frac{{k^{2} }}{{4\pi^{2} z^{2} }}\int\limits_{0}^{a} {\int\limits_{0}^{a} {\int\limits_{0}^{2\pi } {\int\limits_{0}^{2\pi } {\left\langle {E(\vec{r}_{1} ,0)E^{ * } (\vec{r}_{2} ,0)} \right\rangle } } } } \\ & \quad \times \exp \left[ {\frac{ik}{{2z}}\left( {\left( {\vec{r}_{1} - \vec{\rho }} \right)^{2} - \left( {\vec{r}_{2} - \vec{\rho }} \right)^{2} } \right)} \right]\left\langle {\exp \left[ {\psi \left( {\overrightarrow {{r_{1} }} ,\overrightarrow {\rho } } \right) + \psi^{*} \left( {\overrightarrow {{r_{2} }} ,\overrightarrow {\rho } } \right)} \right]\,} \right\rangle d\vec{r}_{1} d\vec{r}_{2} \\ \end{aligned}$$
(22)

The ensemble average term in Eq. (22), can be expressed as (Andrews and Phillips 2005)

$$\left\langle {\exp \left[ {\psi \left( {r_{1} ,\rho } \right) + \psi^{ * } \left( {r_{2} ,\rho } \right)} \right]} \right\rangle = \exp \left[ {\frac{1}{{\rho_{0}^{2} }}\left( {2r_{1} r_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \right)} \right]\exp \left[ { - \frac{1}{{\rho_{0}^{2} }}\left( {r_{1}^{2} + r_{2}^{2} } \right)} \right]$$
(23)

Substituting Eqs. (19) and (23) into Eq. (22) and by putting \(\vec{\rho } = \vec{0}\) into Eq. (22), the expression of the axial intensity is written as

$$\begin{aligned} \left\langle {I\left( {0,z} \right)} \right\rangle & = \frac{{k^{2} E_{0}^{2} }}{{2^{2 + n + m} \pi^{2} z^{2} }}\sum\limits_{{s_{1} = 0}}^{n} {\left( { \pm 1} \right)^{{s_{1} }} \left( {\begin{array}{*{20}c} n \\ {s_{1} } \\ \end{array} } \right)\sum\limits_{{s_{2} = 0}}^{m} {\left( { \pm 1} \right)^{{s_{2} }} \left( {\begin{array}{*{20}c} m \\ {s_{2} } \\ \end{array} } \right)} } \\ & \quad \times \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{2\pi } {\int\limits_{0}^{2\pi } {\exp \left( { - \beta_{1}^{ \pm } r_{1}^{2} } \right)} } } } \exp \left( { - \beta_{2}^{ \pm } r_{2}^{2} } \right)\exp \left[ {\frac{1}{{\rho_{0}^{2} }}\left( {2r_{1} r_{2} \cos \left( {\theta_{1} - \theta_{2} } \right)} \right)} \right] \\ & \quad \times \exp \left[ {il\left( {\theta_{1} - \theta_{2} } \right)} \right]J_{l} \left( {\frac{\mu q}{{\omega_{0} }}r_{1} } \right)\,J_{l} \left( {\frac{\mu q}{{\omega_{0} }}r_{2} } \right)r_{1} dr_{1} d\theta_{1} r_{2} dr_{2} d\theta_{2} , \\ \end{aligned}$$
(24)

where

$$\beta_{1}^{ \pm } = \frac{1}{{\omega_{0}^{2} }} + \frac{1}{{\rho_{0}^{2} }} \pm a_{{s_{1} n}} \Omega - \frac{ik}{{2z}}$$
(25a)

and

$$\beta_{2}^{ \pm } = \frac{1}{{\omega_{0}^{2} }} + \frac{1}{{\rho_{0}^{2} }} \pm a_{{s_{2} m}} \Omega + \frac{ik}{{2z}}$$
(25b)

Applying the following integral formula (Gradshteyn and Ryzhik 1994)

$$\int\limits_{0}^{2\pi } {\exp \left[ { - im\theta_{1} + x\cos \left( {\theta_{1} - \theta_{2} } \right)} \right]} d\theta_{1} = 2\pi \exp \left( { - im\theta_{2} } \right)I_{m} \left( x \right),$$
(26)

with \(I_{m} \left( z \right) = \left( { - i} \right)^{m} J_{m} \left( {iz} \right)\).

One obtains the expression of the Eq. (24) as follows

$$\begin{aligned} \left\langle {I\left( {0,z} \right)} \right\rangle & = \frac{{\left( { - i} \right)^{l} k^{2} E_{0}^{2} }}{{2^{n + m} z^{2} }}\sum\limits_{{s_{1} = 0}}^{n} {\left( { \pm 1} \right)^{{s_{1} }} \left( {\begin{array}{*{20}c} n \\ {s_{1} } \\ \end{array} } \right)\sum\limits_{{s_{2} = 0}}^{m} {\left( { \pm 1} \right)^{{s_{2} }} \left( {\begin{array}{*{20}c} m \\ {s_{2} } \\ \end{array} } \right)} } \\ & \quad \times \int\limits_{0}^{\infty } {\exp \left( { - \beta_{2}^{ \pm } r_{2}^{2} } \right)} J_{l} \left( {\frac{\mu q}{{\omega_{0} }}r_{2} } \right)r_{2} dr_{2} \int\limits_{0}^{\infty } {\exp \left( { - \beta_{1}^{ \pm } r_{1}^{2} } \right)} J_{l} \left( {\frac{\mu q}{{\omega_{0} }}r_{1} } \right)J_{l} \left( {i\frac{{2r_{2} }}{{\rho_{0}^{2} }}r_{1} } \right)r_{1} dr_{1} . \\ \end{aligned}$$
(27)

Recalling the integral formula for solving these last integrals

$$\int\limits_{0}^{\infty } {x\exp \left( { - \gamma x^{2} } \right)} J_{n} \left( {\alpha x} \right)J_{n} \left( {\delta x} \right)dx = \frac{1}{2\gamma }\exp \left( { - \frac{{\alpha^{2} + \delta^{2} }}{4\gamma }} \right)I_{n} \left( { - \frac{\alpha \delta }{{2\gamma }}} \right)\;{\text{with}}\;\left[ {{\text{Re}} n > - 1,\left| {\arg \left( \gamma \right)} \right|\langle \frac{\pi }{4},\alpha > 0,\delta > 0} \right]$$
(28)

After tedious forward integral calculations, the expression of Eq. (27) can be arranged as

$$\begin{aligned} \left\langle {I\left( {0,z} \right)} \right\rangle & = i^{l} \frac{{k^{2} E_{0}^{2} }}{{2^{2 + n + m} z^{2} }}\sum\limits_{{s_{1} = 0}}^{n} {\left( { \pm 1} \right)^{{s_{1} }} \left( {\begin{array}{*{20}c} n \\ {s_{1} } \\ \end{array} } \right)\sum\limits_{{s_{2} = 0}}^{m} {\left( { \pm 1} \right)^{{s_{2} }} \left( {\begin{array}{*{20}c} m \\ {s_{2} } \\ \end{array} } \right)} } \frac{1}{{\beta^{ \pm } \beta_{1}^{ \pm } }}\exp \left[ { - \frac{{q^{2} \mu^{2} }}{{4\omega_{0}^{2} }}\left( {\frac{1}{{\beta^{ \pm } }} + \frac{1}{{\beta_{1}^{ \pm } }}} \right)} \right] \\ & \quad \times \exp \left( { - \frac{{q^{2} \mu^{2} }}{{4\beta^{ \pm } \beta_{1}^{2 \pm } \omega_{0}^{2} \rho_{0}^{4} }}} \right)J_{l} \left( { - \frac{{iq^{2} \mu^{2} }}{{2\beta^{ \pm } \beta_{1}^{ \pm } \omega_{0}^{2} \rho_{0}^{2} }}} \right) \\ \end{aligned}$$
(29)

where

$$\beta^{ \pm } = \beta_{2}^{ \pm } - \frac{1}{{\beta_{1}^{ \pm } \rho_{0}^{4} }}$$
(30)

Equation (29) is Eq. (11) in the text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nossir, N., Dalil-Essakali, L. & Belafhal, A. A comparative study on the axial intensity of some laser beams spreading through human and mouse biological tissues. Opt Quant Electron 56, 887 (2024). https://doi.org/10.1007/s11082-024-06815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06815-8

Keywords

Navigation