Skip to main content
Log in

Analysis of time-fractional Schrödinger equation with group velocity dispersion coefficients and second-order spatiotemporal effects: a new Kudryashov approach

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study investigates the application of the novel Kudryashov approach to a time-fractional nonlinear Schrödinger model featuring second-order spatiotemporal and group velocity dispersion coefficients. Various exact solutions for this model in optical fibers are established, utilizing hyperbolic and exponential functions. These solutions encompass diverse optical solitons, such as bright, singular, bell-shaped, mixed dark-bright, dark-bright, and wave solitons. To assess the significance of the time-fractional nonlinear Schrödinger model and illustrate the different forms of these innovative optical solutions, contour plots, three-dimensional plots, and two-dimensional plots are presented. Furthermore, the influence of the conformable fractional order derivative on a specific category of the new optical solutions is explored through illustrative graphs, emphasizing the impact of fractional parameters. The primary objective of this paper is to elucidate the significant influence of the conformable fractional derivative parameter on the Schrödinger equation, particularly in shaping various physical aspects of signal propagation in optical fiber. Understanding and manipulating this parameter provide opportunities for optimizing optical fiber systems for specific applications. Moreover, the proposed technique demonstrates its reliability as a tool for examining analytical solutions of fractional differential equations. The introduced Schrödinger model holds potential applications in the transmission of ultra-fast pulses through optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable.

References

  • Abdullah, F.A., Islam, M.T., Gómez-Aguilar, J.F., Akbar, M.A.: Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field. Opt. Quantum Electron. 55(1), 69 (2023)

    Google Scholar 

  • Akbar, M.A., Abdulla, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Google Scholar 

  • Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV–Schrodinger equations. Opt. Quantum Electron. 53(10), 588 (2021)

    Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine-cosine functions. Opt. Quantum Electron. 54(10), 666 (2022)

    Google Scholar 

  • Alquran, M.: Classification of single-wave and bi-wave motion through fourth-order equations generated from the Ito model. Phys. Scr. 98, 85207 (2023a)

    Google Scholar 

  • Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023b)

    Google Scholar 

  • Alquran, M., Al Smadi, T.: Generating new symmetric bi-peakon and singular bi-periodic profile solutions to the generalized doubly dispersive equation. Opt. Quantum Electron. 55, 736 (2023)

    Google Scholar 

  • Alquran, M., Ali, M., Jadallah, H.: New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. J. Ocean Eng. Sci. 7(2), 163–169 (2022)

    Google Scholar 

  • Asjad, M.I., Ullah, N., Rehman, H.U., Gia, T.N.: Novel soliton solutions to the Atangana–Baleanu fractional system of equations for the ISALWs. Open Phys. 19, 770–779 (2021)

    Google Scholar 

  • Attia, R.A.M., Baleanu, D., Lu, D., Khater, M.M.A., Ahmed, E.S.: Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete Contin. Dyn. Syst. 14, 3459 (2021)

    MathSciNet  Google Scholar 

  • Baskonus, H.M., Gao, W., Rezazadeh, H., Mirhosseini-Alizamini, S.M., Baili, J., Ahmad, H., Gia, T.N.: New classifications of nonlinear Schrödinger model with group velocity dispersion via new extended method. Results Phys. 31, 104910 (2021)

    Google Scholar 

  • Biswas, A.: Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov’s method. Optik (Stuttgart) 164, 303–310 (2018)

    ADS  Google Scholar 

  • Christian, J.M., McDonald, G.S., Hodgkinson, T.F., Chamorro-Posada, P.: Wave envelopes with second-order spatiotemporal dispersion. I. Bright Kerr solitons and cnoidal waves. Phys. Rev. A 86(2), 23838 (2012)

    ADS  Google Scholar 

  • Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    MathSciNet  Google Scholar 

  • Fahad, A., Boulaaras, S.M., Rehman, H.U., Iqbal, I., Saleem, M.S., Chou, D.: Analysing soliton dynamics and a comparative study of fractional derivatives in the nonlinear fractional Kudryashov’s equation. Results Phys. 55, 107114 (2023)

    Google Scholar 

  • Faridi, W.A.: The computation of Lie point symmetry generators, modulational instability, classification of conserved quantities, and explicit power series solutions of the coupled system. Results Phys. 54, 107126 (2023)

    Google Scholar 

  • Faridi, W.A., AlQahtani, S.A.: The explicit power series solution formation and computation of Lie point infinitesimals generators: lie symmetry approach. Phys. Scr. 98(12), 125249 (2023)

    ADS  Google Scholar 

  • Faridi, W.A., Bakar, M.A., Akgül, A., Abd El-Rahman, M., El Din, S.M.: Exact fractional soliton solutions of thin-film ferroelectric material equation by analytical approaches. Alex. Eng. 78, 483–497 (2023a)

    Google Scholar 

  • Faridi, W.A., Bakar, M.A., Myrzakulova, Z., Myrzakulov, R., Akgül, A., El Din, S.M.: The formation of solitary wave solutions and their propagation for Kuralay equation. Results Phys. 52, 106774 (2023b)

    Google Scholar 

  • Faridi, W.A., Tipu, G.H., Myrzakulova, Z., Myrzakulov, R., Akinyemi, L.: Formation of optical soliton wave profiles of Shynaray-IIA equation via two improved techniques: a comparative study. Opt. Quantum Electron. 56, 132 (2024)

    Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Mod. Phys. Lett. B. 33(20), 1950235 (2019)

    ADS  Google Scholar 

  • Ghayad, M.S., Badra, N.M., Ahmed, H.M., Rabie, W.B.: Derivation of optical solitons and other solutions for nonlinear Schrödinger equation using modified extended direct algebraic method’’. Alex. Eng. J. 64, 801–811 (2023)

    Google Scholar 

  • González-Gaxiola, O., Biswas, A., Asma, M., Alzahrani, A.K.: Optical dromions and domain walls with the Kundu–Mukherjee–Naskar equation by the Laplace–Adomian decomposition scheme. Regul. Chaotic Dyn. 25, 338–348 (2020)

    MathSciNet  ADS  Google Scholar 

  • Huang, M., Murad, M.A.S., Ilhan, O.A., Manafian, J.: One-, two-and three-soliton, periodic and cross-kink solutions to the (2 + 1)-D variable-coefficient KP equation. Mod. Phys. Lett. B. 34(4), 2050045 (2020)

    MathSciNet  ADS  Google Scholar 

  • Islam, M.T., Akbar, M.A., Gómez-Aguilar, J.F., Bonyah, E., Fernandez-Anaya, G.: Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations. J. Ocean Eng. Sci. 7, 528–535 (2022)

    Google Scholar 

  • Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti–Leon–Manna–Pempinelli model. Phys. Scr. 98, 085230 (2023a)

    ADS  Google Scholar 

  • Islam, M.T., Akter, M.A., Gomez-Aguilar, J.F., Akbar, M.A., Pérez-Careta, E.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. 32, 2350037 (2023b)

    ADS  Google Scholar 

  • Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8, 1127 (2020)

    Google Scholar 

  • Jaradat, I., Alquran, M.: A variety of physical structures to the generalized equal-width equation derived from Wazwaz–Benjamin–Bona–Mahony model. J. Ocean Eng. Sci. 7, 244–247 (2022)

    Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik (Stuttgart) 206, 163550 (2020)

    ADS  Google Scholar 

  • Kumar, D., Kaplan, M.: Application of the modified Kudryashov method to the generalized Schrödinger–Boussinesq equations. Opt. Quantum Electron. 50, 1–14 (2018)

    Google Scholar 

  • Majid, S.Z., Asjad, M.I., Faridi, W.A.: Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment. Eur. Phys. J. Plus. 138, 1040 (2023)

    Google Scholar 

  • Manafian, J., Murad, M.A.S., Alizadeh, A., Jafarmadar, S.: M-lump, interaction between lumps and stripe solitons solutions to the (2 + 1)-dimensional KP-BBM equation. Eur. Phys. J. Plus. 135, 1–20 (2020)

    Google Scholar 

  • Murad, M.A.S.: Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients. Appl. Math. J. Chin. Univ. 37, 404–414 (2022)

    MathSciNet  Google Scholar 

  • Murad, M.A.S.: New optical soliton solutions for time-fractional Kudryashov’s equation in optical fiber. Optik (Stuttgart) 283, 170897 (2023)

    ADS  Google Scholar 

  • Murad, M.A.S., Hamasalh, F.K.: Numerical study for fractional-order magnetohydrodynamic boundary layer fluid flow over stretching sheet. Punjab Univ. J. Math. 55, 71–87 (2023)

    Google Scholar 

  • Murad, M.A.S., Hamasalh, F.K., Ismael, H.F.: Various optical solutions for time-fractional Fokas system arises in monomode optical fibers. Opt. Quantum Electron. 55, 300 (2023a)

    Google Scholar 

  • Murad, M.A.S., Hamasalh, F.K., Ismael, H.F.: Various exact optical soliton solutions for time fractional Schrodinger equation with second-order spatiotemporal and group velocity dispersion coefficients. Opt. Quantum Electron. 55, 607 (2023b)

    Google Scholar 

  • Murad, M.A.S., Ismael, H.F., Sulaiman, T.A., Bulut, H.: Analysis of optical solutions of higher-order nonlinear Schrödinger equation by the new Kudryashov and Bernoulli’s equation approaches’’. Opt. Quantum Electron. 56, 76 (2024)

    Google Scholar 

  • Nasreen, N., Lu, D., Arshad, M.: Optical soliton solutions of nonlinear Schrödinger equation with second order spatiotemporal dispersion and its modulation instability. Optik (Stuttgart) 161, 221–229 (2018)

    ADS  Google Scholar 

  • Rehman, H.U., Awan, A.U., Tag-ElDin, E.M., Bashir, U., Allahyani, S.A.: Construction of exact solutions for Gilson–Pickering model using two different approaches. Universe 8, 592 (2022)

    ADS  Google Scholar 

  • Rehman, H.U., Awan, A.U., Hassan, A.M., Razzaq, S.: Analytical soliton solutions and wave profiles of the (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. Results Phys. 52, 106769 (2023a)

    Google Scholar 

  • Rehman, H.U., Iqbal, I., Mirzazadeh, M., Haque, S., Mlaiki, N., Shatanawi, W.: Dynamical behavior of perturbed Gerdjikov–Ivanov equation through different techniques. Bound. Value Probl. 2023, 105 (2023b)

    MathSciNet  Google Scholar 

  • Rehman, H.U., Seadawy, A.R., Razzaq, S., Rizvi, S.T.R.: Optical fiber application of the improved generalized Riccati equation mapping method to the perturbed nonlinear Chen–Lee–Liu dynamical equation. Optik (Stuttgart) 290, 171309 (2023c)

    ADS  Google Scholar 

  • Rehman, H.U., Yasin, S., Iqbal, I.: Optical soliton for (2 + 1)-dimensional coupled integrable NLSE using Sardar-subequation method. Mod. Phys. Lett. B. 38, 2450044 (2024)

    ADS  Google Scholar 

  • Rezaei, S., Rezapour, S., Alzabut, J., de Sousa, R., Alotaibi, B.M., El-Tantawy, S.A.: Some novel approaches to analyze a nonlinear Schrodinger’s equation with group velocity dispersion: plasma bright solitons. Results Phys. 35, 105316 (2022)

    Google Scholar 

  • Rezazadeh, H., Odabasi, M., Tariq, K.U., Abazari, R., Baskonus, H.M.: On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients. Chin. J. Phys. 72, 403–414 (2021a)

    Google Scholar 

  • Rezazadeh, H., Adel, W., Eslami, M., Tariq, K.U., Mirhosseini-Alizamini, S.M., Bekir, A., Chu, Y.M.: On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion. Open Phys. 19, 111–118 (2021b)

    Google Scholar 

  • Sadaf, M., Akram, G., Dawood, M.: An investigation of fractional complex Ginzburg–Landau equation with Kerr law nonlinearity in the sense of conformable, beta and M-truncated derivatives. Opt. Quantum Electron. 54(4), 248 (2022)

    Google Scholar 

  • Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31, 1353–1362 (2017)

    MathSciNet  ADS  Google Scholar 

  • Tariq, K.U., Seadawy, A.R.: Optical soliton solutions of higher order nonlinear Schrödinger equation in monomode fibers and its applications. Optik (Stuttgart) 154, 785–798 (2018)

    ADS  Google Scholar 

  • Tipu, G.H., Faridi, W.A., Rizk, D., Myrzakulova, Z., Myrzakulov, R., Akinyemi, L.: The optical exact soliton solutions of Shynaray-IIA equation with 86-model expansion approach. Opt. Quantum Electron. 56, 226 (2024)

    Google Scholar 

  • Wang, K.J.: A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. Plus 135, 871 (2020)

    ADS  Google Scholar 

  • Yao, S.-W., Ullah, N., Rehman, H.U., Hashemi, M.S., Mirzazadeh, M., Inc, M.: Dynamics on novel wave structures of non-linear Schrödinger equation via extended hyperbolic function method. Results Phys. 48, 106448 (2023)

    Google Scholar 

  • Yousif, E.A., Abdel-Salam, E.B., El-Aasser, M.A.: On the solution of the space-time fractional cubic nonlinear Schrödinger equation. Results Phys. 8, 702–708 (2018)

    ADS  Google Scholar 

  • Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)

    MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MASM prepared all the components in the paper.

Corresponding author

Correspondence to Muhammad Amin Sadiq Murad.

Ethics declarations

Conflict of interest

The author declares that there is no conflict interest.

Ethical approval

The author states that this paper complies with ethical standards. This work does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murad, M.A.S. Analysis of time-fractional Schrödinger equation with group velocity dispersion coefficients and second-order spatiotemporal effects: a new Kudryashov approach. Opt Quant Electron 56, 908 (2024). https://doi.org/10.1007/s11082-024-06661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06661-8

Keywords

Navigation