Skip to main content
Log in

Dispersive soliton solutions to the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation via an analytical method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The primary objective of this study is to extract nonlinear wave patterns from the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli (4D-BLMP) equation, considering both constant and time-dependent coefficients, which is used widely to describe the incompressible fluid. By employing the amended extended tanh-function method, we successfully obtained innovative solutions in the form of combo dark bright, hyperbolic or lumps, periodic, and singular mix solitons solutions, and others. To ensure the utmost precision and reliability of our findings, we rigorously confirm them using the robust Mathematica software. These solutions hold paramount importance in the domains of in the study of incompressible fluids and acoustic waves, enriching our understanding of the foundational physical principles embedded within the equation. The study visually presents the computed wave solutions using 2D, 3D, and contour plots, effectively representing the internal structure of the phenomenon. This study proves that the computational method used is efficient, brief, and widely applicable, making it valuable to engineers who work with engineering models and dynamical models. This research can help to better understand physical phenomena in many areas of applied physics, particularly in the study of incompressible fluids and acoustic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data

As this research did not involve the creation or examination of any datasets, data sharing is not relevant in this context.

References

  • Abdullah, F.A., Islam, M.T., Gomez-Aguilar, J.F., Akbar, M.A.: Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field. Opt. Quant. Electron. 55(1), 69 (2023)https://doi.org/10.1007/s11082-022-04308-0

  • Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W.. Al., Sharif, M.A., Osman, M.S.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Google Scholar 

  • Alquran, M., Jaradat, H.M., Syam, M.I.: A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg–de Vries-Burgers equation. Nonlinear Dyn. 91, 1619–1626 (2018)

    Google Scholar 

  • Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quant. Electron. 54(5), 309 (2022). https://doi.org/10.1007/s11082-022-03640-9

  • Arefin, M.A., Khatun, M.A., Islam, M.S., Akbar, M.A., Uddin, M.H.: Explicit soliton solutions to the fractional order nonlinear models through the Atangana beta derivative. Int. J. Theor. Phys. 62(6), 134 (2023). https://doi.org/10.1007/s10773-023-05400-

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time-fractional nonlinear differential-difference equation with conformable derivatives in the ferroelectric materials. Opt. Quant. Electron. 55(4), 289 (2023a). https://doi.org/10.1007/s11082-022-04497-8

  • Asghari, Y., Eslami, M., Rezazadeh, H.: Exact solutions to the conformable time-fractional discretized mKdv lattice system using the fractional transformation method. Opt. Quant. Electron. 55(4), 318 (2023b). https://doi.org/10.1007/s11082-022-04529-3

  • Bekir, A., Cevikel, A.C., Guner, O., San, S.: Bright and dark soliton solutions of the (2+1)-dimensional evolution equations. Math. Model. Anal. 19(1), 118–126 (2014)

    MathSciNet  Google Scholar 

  • Biswas, A., Alqahtani, R.T.: Chirp-free bright optical solitons for perturbed Gerdjikov–Ivanov equation by semi-inverse variational principle. Optik 147, 72–76 (2017)

    ADS  Google Scholar 

  • Cevikel, A., Bekir, A.: New solitons and periodic solutions for (2+1)-dimensional Davey–Stewartson equations. Chin. J. Phys. 51(1) 1-13 (2013)

  • Chai, J., Tian, B., Wang, Y.F., Zhen, H.L., Wang, Y.P.: Mixed-type vector solitons for the coupled cubic–quintic nonlinear Schrodinger equations with variable coefficients in an optical fiber. Phys. A 434, 296–304 (2015)

    MathSciNet  Google Scholar 

  • Chaudhary, P., Rajput, B.S.: A classical approach to dyons in six-dimensional space-time. Indian J. Phys. 85(12), 1843–1852 (2011)

    ADS  Google Scholar 

  • El-Wakil, S.A., Abulwafa, E.M., Elhanbaly, A., Abdou, M.A.: The extended homogeneous balance method and its applications for a class of nonlinear evolution equations. Chaos Solitons Fractals 33(5), 1512–1522 (2007)

    ADS  MathSciNet  Google Scholar 

  • Eslami, M.: Optical solutions to a conformable fractional extended KdV model equation. Partial Differ. Equ Appl. Math. 8, (2023)

  • Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    MathSciNet  Google Scholar 

  • Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    ADS  Google Scholar 

  • Hietarinta, J.: Equations that pass Hirota’s three-soliton condition and other tests of integrability. In: Nonlinear Evolution Equations and Dynamical Systems, pp. 46–50. Springer (1990)

  • Hosseini, K., Ma, W.X., Ansari, R., Mirzazadeh, M., Pouyanmehr, R., Samadani, F.: Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Phys. Scr. 95(6), 065208 (2020). https://doi.org/10.1088/1402-4896/ab7fee

  • Islam, M.T., Akbar, M.A., Ahmad, H., Ilhan, O.A., Gepreel, K.A.: Diverse and novel soliton structures of coupled nonlinear Schrödinger type equations through two competent techniques. Mod. Phys. Lett. B 36(11), 2250004 (2022a). https://doi.org/10.1142/S021798492250004X

  • Islam, M.T., Akter, M.A., Ryehan, S., Gómez-Aguilar, J.F., Akbar, M.A.: A variety of solitons on the oceans exposed by the Kadomtsev Petviashvili-modified equal width equation adopting different techniques. J. Ocean Eng. Sci. (2022b). https://doi.org/10.1016/j.joes.2022.07.001

  • Islam, M.T., Akter, M.A., Gómez-Aguilar, J.F., Akbar, M.A., Perez-Careta, E.: Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations. Opt. Quant. Electron. 54(8), 520 (2022c). https://doi.org/10.1007/s11082-022-03891-6

  • Islam, M.T., Akbar, M.A., Gómez-Aguilar, J.F., Bonyah, E., Fernandez-Anaya, G.: Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations. J. Ocean Eng. Sci. 7(6), 528–535 (2022d)

    Google Scholar 

  • Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti–Leon–Manna–Pempinelli model. Phys. Scr. 98, 085230 (2023a). https://doi.org/10.1088/1402-4896/ace743

  • Islam, M.T., Ryehan, S., Abdullah, F.A., Gómez-Aguilar, J.F.: The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik 287, 171140 (2023b)

  • Islam, M.T., Akter, M.A., Gomez-Aguilar, J.F., Akbar, M.A., Pérez-Careta, E.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phy. Mater. 32(4) (2023c). https://doi.org/10.1142/S0218863523500376

  • Khatun, M.A., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Numerous explicit soliton solutions to the fractional simplified Camassa–Holm equation through two reliable techniques. Ain Shams Eng. J. 14 1-7 (2023)

  • Kilic, B., Inc, Mustafa: The first integral method for the time fractional Kaup–Boussinesq system with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)

    MathSciNet  Google Scholar 

  • Kuo, C.K.: Novel resonant multi-soliton solutions and inelastic interactions to the (3+1) and (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equations via the simplified linear superposition principle. Eur. Phys. J. Plus 136(1), 77 (2021). https://doi.org/10.1140/epjp/s13360-020-01062-8

  • Li, K.M.: Damping and instability of solitons in weakly inhomogeneous dust plasma crystals. Indian J. Phys. 88, 93–96 (2014)

    ADS  Google Scholar 

  • Li, B.Q., Ma, Y.L.: Multiple-lump waves for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Computers Mathematics with Applications 76(1), 204–214 (2018)

    ADS  MathSciNet  Google Scholar 

  • Liu, J.G., Wazwaz, A.M.: Breather wave and lump-type solutions of new (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation in incompressible fluid. Math. Methods Appl. Sci. 44(2), 2200–2208 (2021)

    ADS  MathSciNet  Google Scholar 

  • Li, Y., Zhang, J.E.: Darboux transformations of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 284(6), 253–258 (2001)

    ADS  MathSciNet  Google Scholar 

  • Luo, L.: New exact solutions and Backlund transformation for Boiti–Leon–Manna–Pempinelli equation. Phys. Lett. A 375(7), 1059–1063 (2011)

    ADS  MathSciNet  Google Scholar 

  • Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022d)

    MathSciNet  Google Scholar 

  • Ma, W.: Riemann–Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies. Acta Math. Sci. 42(1), 127–140 (2022a)

    MathSciNet  Google Scholar 

  • Ma, W.X.: Riemann-Hilbert problems and soliton solutions of type \((\lambda ^{*},- \lambda ^{*})\) reduced nonlocal integrable mKdV hierarchies. Mathematics 10(6), (2022c). https://doi.org/10.1007/s10473-022-0106-z

    MathSciNet  Google Scholar 

  • Ma, W.X.: Riemann–Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies. Physica D 430, (2022b). https://doi.org/10.1016/j.physd.2021.133078 

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(2), 2350016 (2023). https://doi.org/10.1142/S0218863523500169

  • Osman, M.S.: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficients. Nonlinear Dyn. 87(2), 1209–1216 (2017)

    MathSciNet  Google Scholar 

  • Osman, M.S., Abdel-Gawad, H.I.: Multi-wave solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients. Eur. Phys. J. Plus 130, 1–11 (2015)

    Google Scholar 

  • Podder, A., Arefin, M.A., Akbar, M.A., Uddin, M.H.: A study of the wave dynamics of the space-time fractional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation function approach. Sci. Rep. 13(1), (2023)

    Google Scholar 

  • Rady, A.A., Osman, E.S., Khalfallah, M.: The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation. Appl. Math. Comput. 217(4), 1385–1390 (2010)

    MathSciNet  Google Scholar 

  • Rasool, T., Hussain, R., Rezazadeh, H., Gholami, D.: The plethora of exact and explicit soliton solutions of the hyperbolic local (4+1)-dimensional BLMP model via GERF method. Results Phys. 46, (2023)

    Google Scholar 

  • Raza, N., Kaplan, M., Javid, A., Inc, M.: Complexiton and resonant multi-solitons of a (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Opt. Quant. Electron. 54, 1–16 (2022)

    Google Scholar 

  • Rehman, H.U., Awan, A.U., Abro, K.A., El Din, E.M.T., Jafar, S., Galal, A.M.: A non-linear study of optical solitons for Kaup–Newell equation without four-wave mixing. J. King Saud Univ.-Sci. 34(5), (2022)

    Google Scholar 

  • Rehman, H.U., Inc, M., Asjad, M.I., Habib, A., Munir, Q.: New soliton solutions for the space-time fractional modified third order Korteweg–de Vries equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.032

  • Rehman, H.U., Seadawy, A.R., Younis, M., Yasin, S., Raza, S.T., Althobaiti, S.: Monochromatic optical beam propagation of paraxial dynamical model in Kerr media. Results Phys. 31, (2021)

    Google Scholar 

  • Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine–Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)

    Google Scholar 

  • Shen, J.L., Wu, X.Y.: Periodic-soliton and periodic-type solutions of the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation by using BNNM. Nonlinear Dyn. 106(1), 831–840 (2021)

    Google Scholar 

  • Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108(3), 2447–2460 (2022)

    Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M.: The modified extended tanh method with the Riccati equation for solving nonlinear partial differential equations. Math. Aeterna 2(2), 145–153 (2012)

    MathSciNet  Google Scholar 

  • Ullah, N., Asjad, M.I., Ur Rehman, H., Akgül, A.: Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Eng. 11(1), 80–91 (2022)

    ADS  Google Scholar 

  • Rehman, H. U., Awan, A. U., Habib, A., Gamaoun, F., El Din, E. M. T., Galal, A. M.: Solitary wave solutions for a strain wave equation in a microstructured solid. Results Phys. 39, (2022)

    Google Scholar 

  • Vijayalekshmi, S., Mani Rajan, M.S., Mahalingam, A., Uthayakumar, A.: Investigation on nonautonomous soliton management in generalized external potentials via dispersion and nonlinearity. Indian J. Phys. 89, 957–965 (2015)

    ADS  Google Scholar 

  • Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87, 1685–1691 (2017)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255,  (2022). https://doi.org/10.1016/j.ijleo.2022.168673

    ADS  Google Scholar 

  • Wu, J., Liu, Y., Piao, L., Zhuang, J., Wang, D.S.: Nonlinear localized waves resonance and interaction solutions of the (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 100, 1527–1541 (2020)

    Google Scholar 

  • Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Google Scholar 

  • Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  • Yokuş, A., Durur, H., Duran, S., Islam, M.T.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math. 41(4), (2022). https://doi.org/10.1007/s40314-022-01812-7

  • Younis, M., Iftikhar, M., Rehman, H.U.: Exact solutions to the nonlinear Schrödinger and Eckhaus equations by modified simple equation method. J. Adv. Phys. 3(1), 77–79 (2014)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial Differ. Equ. Appl. Math. 8, (2023)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen–Cahn equations throughout a novel technique. Results Phys. 37, (2022)

    Google Scholar 

  • Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)

    ADS  MathSciNet  Google Scholar 

  • Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Google Scholar 

  • Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

  • Zhuo-Sheng, L., Hong-Qing, Z.: On a new modified extended tanh-function method. Commun. Theor. Phys. 39(4), (2003). https://doi.org/10.1088/0253-6102/39/4/405

Download references

Acknowledgements

The author (Taseer Muhammad) thanks the KKU research unit for the financial and administrative support under grant number 521 for year 44.

Author information

Authors and Affiliations

Authors

Contributions

JA: resources, supervision, validation, snd acquisition. SR conceptualization, methodology, writing - original draft, formal analysis, validation, and software. TM: resources, acquisition, conceptualization, visualization, investigation, writing-review, and editing. SUR: conceptualization, formal analysis, writing the original draft, review, software implementation, methodology.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Ethics approval and consent to participate

The authors of this research have unanimously agreed and granted their consent for the publication of their work.

Consent for publication

All authors have provided their approval and consent for the publication of this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Rani, S., Muhammad, T. et al. Dispersive soliton solutions to the (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation via an analytical method. Opt Quant Electron 56, 904 (2024). https://doi.org/10.1007/s11082-024-06489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06489-2

Keywords

Mathematics Subject Classification

Navigation