Skip to main content
Log in

Soliton solutions of DSW and Burgers equations by generalized (G′/G)-expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The nonlinear evolution equations (NLEEs) play a significant role in applied mathematics, including ordinary and partial differential equations, which are frequently used in many disciplines of applied sciences. The Drinfeld–Sokolov–Wilson (DSW) equation and the Burgers equation are the fundamental equations occurring in various areas of physics and applied mathematics, such as nonlinear acoustics and fluid mechanics. The new generalized \((\mathrm{G{\prime}}/{\text{G}})\)-expansion method is an effective and more powerful mathematical tool for solving NLEEs arising in applied mathematics and mathematical physics. In this article, we investigate further exact solutions as well as soliton solutions to these couple of nonlinear evolution equations by executing the new generalized \((\mathrm{G{\prime}}/{\text{G}})\)-expansion method. A large number of soliton solutions, including single soliton, bell-shaped soliton, kink-shaped soliton, singular kink soliton, singular soliton, periodic soliton, irregular periodic soliton solutions, and others, have been retrieved. Each of the derived solutions includes an explicit function of the variables in the equations under consideration. We provide some 3D plots to visualize and realize the characteristics of these solutions. It has been established that the suggested techniques are more potential and successful at obtaining soliton solutions for nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelaziz, A.M., Abdelstar, M.E.: Enhanced (G’/G)-expansion method and its application to the Drinfel’d-Sokolov-Wilson equation. Phys. Sci. Int. J. 9(1), 1–22 (2016)

    Google Scholar 

  • Adomian, G.: Solving frontier problems of physics: the decomposition method. Kluwer Academic, Boston (1994)

    Google Scholar 

  • Akbar, M.A., Ali, N.H.M.: The improved F-expansion method with Riccati equation and its applications in mathematical physics. Cogent Math. 4(1), 1282577 (2017)

    MathSciNet  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Haque, M.: Soliton solutions and fractional-order effect on solitons to the nonlinear optics model. Opt. Quantum Electron. 54, 461 (2022)

    Google Scholar 

  • Alam, M.N., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via the new generalized (G′/G)-expansion method. Univers. J. Comput. Math. 1(4), 129–136 (2013a)

    Google Scholar 

  • Alam, M.N., Akbar, M.A.: Exact traveling wave solutions of the KP-BBM equation by using the new generalized (G′/G)-expansion method. Springerplus 2, 617 (2013b)

    PubMed  PubMed Central  Google Scholar 

  • Bekir, A.: Application of the (G’/G)-expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  • Benson, T.M., Sewell, P., Sujecki, S., et al.: Structure related beam propagation. Opt. Quantum Electron. 31, 689–703 (1999)

    Google Scholar 

  • Çelik, N., Seadawy, A.R., Özkan, Y.S., Yaşar, E.: A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws. Chaos Solit. Fractals. 143, 110486 (2021)

    MathSciNet  Google Scholar 

  • Cheemaa, N., Younis, M.: New and more general traveling wave solutions for nonlinear Schrödinger equation. Waves Random Complex Media 326(1), 30–41 (2016a)

    ADS  Google Scholar 

  • Cheemaa, N., Younis, M.: New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 83, 1395–1401 (2016b)

    MathSciNet  Google Scholar 

  • Cheemaa, N., Mehmood, S.A., Rizvi, S.T.R., Younis, M.: Single and combined optical solitons with third order dispersion in Kerr media. Optik 127(20), 8203–8208 (2016)

    ADS  CAS  Google Scholar 

  • Cheemaa, N., Seadawy, A.R., Chen, S.: Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. plus. 134, 117 (2019)

    Google Scholar 

  • Eslami, M., Vajargah, F., Mirzazadeh, B.: Exact solutions of modified Zakharov Kuznetsov equation by the homogeneous balance method. Ain Shams Eng. J. 5(1), 221–225 (2014)

    Google Scholar 

  • Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    ADS  MathSciNet  CAS  Google Scholar 

  • Gu, Y., Yuan, W., Aminakbari, N., et al.: Exact solutions of the vakhnenko-parkes equation with complex method. J. Funct. Spaces 6521357, 1–6 (2017)

    MathSciNet  Google Scholar 

  • Gu, Y., Zia, S.M., Islam, M., et al.: Bilinear method and semi-inverse variational principle approach to the generalized (2+1)-dimensional shallow water wave equation. Results Phys. 45(1), 106213 (2023)

    Google Scholar 

  • He, H., Wu, X.H.: Exp(-Φ(η))-Expansion method for nonlinear wave equations. Chaos Solit. Fractals. 30, 700–708 (2006)

    ADS  Google Scholar 

  • Hossain, A.K.M.K.S., Akbar, M.A.: Closed form solutions of two nonlinear equations via enhanced (G′/G)-expansion method. Cogent Math. 4(1), 1355958 (2017)

    MathSciNet  Google Scholar 

  • Hossain, A.K.M.K.S., Akbar, M.A.: Solitary wave solutions of few nonlinear evolution equations. AIMS Math. 5(2), 1199–1215 (2020)

    MathSciNet  Google Scholar 

  • Hossain, A.K.M.K.S., Akbar, M.A.: Traveling wave solutions of Benny Luke equation via the enhanced (G’/G)-expansion method. Ain Shams Eng. J. 12(4), 4181–4187 (2021)

    Google Scholar 

  • Hossain, A.K.S., Akbar, M.A.: Multi-soliton solutions of the Sawada-Kotera equation using the Hirota direct method: Novel insights into nonlinear evolution equations. Partial Differ. Equ. Appl. Math. 8, 100572 (2023)

    Google Scholar 

  • Hossain, A.K.M.K.S., Akbar, M.A., Wazwaz, A.M.: Closed form solutions of complex wave equations via modified simple equation method. Cogent Phys. 4, 131275 (2017)

    ADS  Google Scholar 

  • Hossain, A.K.M.K.S., Akbar, M.A., Azad, M.A.K.: The closed form solutions of simplified MCH equation and third extended fifth order nonlinear equation. Propuls. Power Res. 8(2), 163–172 (2019)

    Google Scholar 

  • Mustafa Inc.: On numerical doubly periodic wave solutions of the coupled Drinfel’d-Sokolov-Wilson equation by the decomposition method. Appl. Math. Comput. 172, 421–430 (2006)

  • Islam, R., Alam, M.N., Hossain, A.K.M.K.S., et al.: Traveling wave solutions of nonlinear evolution equations via Exp(-Φ(η))-expansion method. Glob. J. Sci. Front. Res. Math. Decis. Sci. 13(11), 63–71 (2014)

    Google Scholar 

  • Javadi, S., Moradi, E., Faradi, M., et al.: Solving equal-width wave-Burgers equation by the (G’/G)-expansion method. J. Math. Comput. Sci. 11, 246–251 (2014)

    Google Scholar 

  • Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)

    MathSciNet  Google Scholar 

  • Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and modified KdV-Zakharov-Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4, 903–909 (2013)

    Google Scholar 

  • Khan, K., Akbar, M.A.: Traveling wave solutions of the (2+1)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the Exp-function method. Ain Shams Eng. J. 5, 247–256 (2014)

    Google Scholar 

  • Khan, K., Akbar, M.A., Alam, M.N.: Traveling Wave Solutions of the non-linear Drinfel’d-Sokolov-Wilson equation and modified Benjamin-Bonna-Mahony equations by modified simple equation method. J. Egypt. Math. Soc. 21(3), 233–240 (2013)

    Google Scholar 

  • Kudryashov, N.A.: Simple equation method to look for exact solutions of nonlinear differential equations. Chaos Solit. Fractals 24, 1217–1231 (2005)

    ADS  Google Scholar 

  • Lasisi, S., Benson, T.M., Gradoni, G., Greenaway, M., Cools, K.: A fast converging resonance-free global multi-trace method for scattering by partially coated composite structures. IEEE Trans. Antennas Propag. 70(10), 9534–9543 (2022)

    ADS  Google Scholar 

  • Lasisi, S., Benson, T.M., Gradoni, G., Greenaway, M., Cools, K.: On the inclusion of thin sheets in the global multi-trace formulation. In: Proc. 34th Gen. Assem. Sci. Symp. Int. Union Radio Sci. (URSI GASS) 1–4 (2021).

  • Naher, H., Abdullah, F.A.: New approach of method and the new generalized (G′/G)-expansion method for nonlinear evolution equation. AIP Adv. 3(3), 032116 (2013)

    ADS  Google Scholar 

  • Reed, M., Benson, T.M., Sewell, P., et al.: Free space radiation mode analysis of rectangular dielectric waveguides. Opt. Quantum Electron. 28, 1175–1179 (1996)

    Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Younis, M., Ali, K.: Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solit. Fractals 151, 111251 (2021)

    Google Scholar 

  • Roshid, H.O., Alam, M.N., Akbar, M.A., et al.: Traveling wave solutions of the simplified MCH equation via Exp(-Φ(η))-expansion method. Br. J. Math. Comput. Sci. 5(5), 595–605 (2005)

    Google Scholar 

  • Roshid, H.O., Rahman, N., Akbar, M.A.: Traveling wave solutions of non-linear Klein-Gordon equation by extended (G’/G)-expansion method. Ann. Pure Appl. Math. 3(1), 10–16 (2013)

    Google Scholar 

  • Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in plasma. Comput. Math. Appl. 67, 172–180 (2014)

    MathSciNet  Google Scholar 

  • Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in magnetized plasma. Comput. Math. Appl. 71, 201–212 (2016)

    MathSciNet  Google Scholar 

  • Seadawy, A.R., Cheemaa, N.: Improved perturbed nonlinear Schrödinger dynamical equation with type of Kerr law nonlinearity with optical soliton solutions. Phys. Scr. 95, 065209 (2020)

    ADS  CAS  Google Scholar 

  • Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78(11), 3620–3632 (2019)

    MathSciNet  Google Scholar 

  • Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations. Alexandria Eng. J. 59(5), 3347–3353 (2020)

    Google Scholar 

  • Wang, M.L., Li, X.Z., Zhang, J.: The (G’/G)-Expansion Method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    ADS  MathSciNet  CAS  Google Scholar 

  • Wang, J., Shehzad, K., Seadawy, A.R., Arshad, M., Asmat, F.: Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability. J. Taibah Univ. Sci. 17(1), 2163872 (2023)

    Google Scholar 

  • Wazwaz, A.M.: A sine-cosine method for handing nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Google Scholar 

  • Wazwaz, A.M.: The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fishers equations. Appl. Math. Comput. 169, 321–338 (2005a)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M.: The tanh method for exact solutions of the Sine Gordon and the Sinh-Gordon equations. Comput. Math. Appl. 49, 565–574 (2005b)

    MathSciNet  Google Scholar 

  • Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R.: Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. 34(30), 2050291 (2020)

    ADS  Google Scholar 

  • Younis, M., Cheemaa, N., Mahmood, S.A., Rizvi, S.T.R.: On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quant. Electron. 48, 542 (2016)

    Google Scholar 

  • Zayed, E.M.E., Ibrahim, S.A.H.: Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett. 29(6), 060201 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees for their valuable comments and suggestions to improve the article.

Funding

No fund is received for this paper.

Author information

Authors and Affiliations

Authors

Contributions

A.KMKSH wrote the manuscript, and Halia Akter carried out the calculations and drew figures. MAA gave direction suggestions and reviewed the manuscript.

Corresponding author

Correspondence to A. K. M. Kazi Sazzad Hossain.

Ethics declarations

Conflict of interest

We have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Khan et al. (2013) used the modified simple equation method to look into exact solutions to the DSW equations and obtained 12 solutions. They obtained the following solutions

$${v}_{\mathrm{1,2}}\left(\xi \right)=\pm \omega \sqrt{\frac{6}{p(r+2s)}}tanh\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x+\omega t)\right),$$
(A.1)
$${v}_{\mathrm{3,4}}\left(\xi \right)=\pm \omega \sqrt{\frac{6}{p(r+2s)}}coth\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x+\omega t)\right),$$
(A.2)
$${v}_{\mathrm{5,6}}\left(\xi \right)=\pm I\omega \sqrt{\frac{6}{p(r+2s)}}tan\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x-\omega t)\right),$$
(A.3)
$${v}_{\mathrm{7,8}}\left(\xi \right)=\pm I\omega \sqrt{\frac{6}{p(r+2s)}}cot\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x-\omega t)\right),$$
(A.4)
$${u}_{1}\left(\xi \right)=-\frac{3\omega }{\left(r+2s\right)}{\mathit{tan}h}^{2}\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x+\omega t)\right),$$
(A.5)
$${u}_{2}\left(\xi \right)=-\frac{3\omega }{\left(r+2s\right)}{\mathit{cot}h}^{2}\left(\sqrt{\left(\frac{\omega }{2q}\right)}\left(x+\omega t\right)\right),$$
(A.6)
$${u}_{3}\left(\xi \right)=-\frac{3\omega }{\left(r+2s\right)}{\mathit{tan}}^{2}\left(\sqrt{\left(\frac{\omega }{2q}\right)}(x-\omega t)\right),$$
(A.7)
$${u}_{4}\left(\xi \right)=-\frac{3\omega }{\left(r+2s\right)}{\mathit{cot}}^{2}\left(\sqrt{\left(\frac{\omega }{2q}\right)}\left(x-\omega t\right)\right).$$
(A.8)

Appendix B

By applying the modified simple equation, Khan and Akbar (2014) investigated the Burgers equation and got five exact solutions, which are as follows:

$${u}_{1}\left(\xi \right)=-\omega \left(1-tanh\left(\frac{\omega }{4}\left(x+y-\omega t\right)\right)\right),$$
(B.1)
$${u}_{2}\left(\xi \right)=-\omega \left(1-coth\left(\frac{\omega }{4}\left(x+y-\omega t\right)\right)\right),$$
(B.2)
$${u}_{3}\left(\xi \right)=-\omega \left(1-cot\left(\frac{\omega }{4}\left(x+y-\omega t\right)\right)\right),$$
(B.3)
$${u}_{4}\left(\xi \right)=-\omega \left(1-tan\left(\frac{\omega }{4}\left(x+y-\omega t\right)\right)\right),$$
(B.4)
$${u}_{5}\left(\xi \right)=-2\omega +\frac{4\omega {c}_{1}\left(1+tanh\left(\omega \left(x+y-\omega t\right)/2\right)\right)}{2{c}_{1}\left(1+tanh\left(\omega \left(x+y-\omega t\right)/2\right)\right)+{c}_{1}\omega \left(sech\left(\omega \left(x+y-\omega t\right)/2\right)\right)}.$$
(B.5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A.K.M.K.S., Akter, H. & Akbar, M.A. Soliton solutions of DSW and Burgers equations by generalized (G′/G)-expansion method. Opt Quant Electron 56, 653 (2024). https://doi.org/10.1007/s11082-024-06319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06319-5

Keywords

Navigation