Skip to main content
Log in

Soliton solutions of optical pulse envelope \(E(Z,\tau)\) with \(\nu\)-time derivative

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger equation (NLSE), which governs the propagation of pulses in optical fiber while including the effects of second, third, and fourth-order dispersion, is crucial for a comprehensive understanding of pulse propagation in optical communication systems. It assists engineers and scientists in optimizing and controlling the behavior of ultra-short pulses in complex and real-world optical systems. In this study, we solve the generalized NLSE for the pulse envelope \({E}(z, \tau )\) with \(\nu\)-time derivative by employing the Sardar subequation method (SSM). We obtain new soliton solutions corresponding to the relevant parameters of this technique. Additionally, conditions depending on the parameters of optical pulse envelope \({E}(z,\tau )\) are provided for the existence of such soliton structures. Furthermore, the solitary wave solutions are expressed in the form of generalized trigonometric and hyperbolic functions. The dynamic behaviours of the solutions are revealed with specific values of the parameters that satisfy their respective existence criteria. The results indicate that SSM demonstrates high reliability, simplicity, and adaptability for use with various nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data will be provided on request to the corresponding author.

References

  • Abdel-Gawad, H.I., Tantawy, M., Osman, M.S.: Dynamic of DNA’s possible impact on its damage. Math. Methods Appl. Sci. 39(2), 168–176 (2016)

    ADS  MathSciNet  Google Scholar 

  • Agrawal, G.P.: Applications of nonlinear fiber optics. (2001)

  • Ahmad, J., Mustafa, Z.: Dynamics of exact solutions of nonlinear resonant Schrödinger equation utilizing conformable derivatives and stability analysis. Eur. Phys. J. D 77(6), 123 (2023)

    ADS  Google Scholar 

  • Ahmad, J., Akram, S., Noor, K., Nadeem, M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13(1), 10877 (2023)

    ADS  Google Scholar 

  • Ahmad, J., Akram, S., Rehman, S.U., Turki, N.B., Shah, N.A.: Description of soliton and lump solutions to M-truncated stochastic Biswas–Arshed model in optical communication. Results Phys. 51, 106719 (2023)

    Google Scholar 

  • Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results Phys. 52, 106761 (2023)

    Google Scholar 

  • Akar, M., Özkan, E.M.: On exact solutions of the (2+ 1)-dimensional time conformable Maccari system. Int. J. Mod. Phys. B, 2350219, (2023)

  • Akram, S., Ahmad, J., Sarwar, S., Ali, A.: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quant. Electron. 55(5), 450 (2023)

    Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. Opt. Quantum. Electron. 55(9), 810 (2023)

    Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear Schrödinger model with their bifurcation and stability analysis. Opt. Quant. Electron. 55(9), 829 (2023)

    Google Scholar 

  • Arnous, A.H., Ekici, M., Moshokoa, S.P., Ullah, M.Z., Biswas, A., Belic, M.: Solitons in nonlinear directional couplers with optical metamaterials by trial function scheme. Acta Phys. Pol. A 132(4), 1399–1410 (2017)

    ADS  Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math., 13 (1), (2015)

  • Atangana, A., Goufo, D., Franc, E.: Extension of matched asymptotic method to fractional boundary layers problems. Math. Probl. Eng. 2014, 107535 (2014)

    MathSciNet  Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 14, 145–149 (2016)

    Google Scholar 

  • Bai, Xue, He, Yanchao, Ming, Xu.: Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. IEEE Trans. Aerosp. Electron. Syst. 57(5), 3279–3295 (2021)

    ADS  Google Scholar 

  • Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Jovanoski, Z., Biswas, A.: Optical solitons in birefringent fibers with spatio–temporal dispersion. Optik 125(17), 4935–4944 (2014)

    ADS  Google Scholar 

  • Biswas, A.: Dispersion-managed solitons in optical fibres. J. Opt. A: Pure Appl. Opt. 4(1), 84–97 (2001)

    ADS  Google Scholar 

  • Biswas, A.: Quasi-stationary non-Kerr law optical solitons. Opt. Fiber Technol. 9(4), 224–259 (2003)

    ADS  Google Scholar 

  • Blow, K.J., Wood, D.: Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25(12), 2665–2673 (1989)

    ADS  Google Scholar 

  • Bulut, M.H., Sulaiman, T.A., Baskonus, H.M., Akturk, T.: Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media. Opt. Quant. Electron. 50(1), 19 (2018)

    Google Scholar 

  • Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43(11), 6162–6165 (1991)

    ADS  Google Scholar 

  • Chen, Hua-Xing.: Hadronic molecules in B decays. Phys. Rev. D 105(9), 094003 (2022)

    ADS  Google Scholar 

  • Chen, Hua-Xing., Chen, Wei, Liu, Xiang, Liu, Xiao-Hai.: Establishing the first hidden-charm pentaquark with strangeness. Eur. Phys. J. C 81(5), 409 (2021)

    ADS  MathSciNet  Google Scholar 

  • Demiray, S.T.: New soliton solutions of optical pulse envelope \({E}(z,~\tau )\) with beta time derivative. Optik 223, 165453 (2020)

    ADS  Google Scholar 

  • El-Ganaini, S., Al-Amr, M.O.: New abundant solitary wave structures for a variety of some nonlinear models of surface wave propagation with their geometric interpretations. Math. Method. Appl. Sci. 45(11), 7200–7226 (2022)

    ADS  MathSciNet  Google Scholar 

  • El-Ganaini, S., Kumar, H.: A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low-pass electrical transmission lines. Chaos. Soliton. Fract. 140, 110218 (2020)

    MathSciNet  Google Scholar 

  • Faisal, K., Abbagari, S., Pashrashid, A., Houwe, A., Yao, S.W., Ahmad, H.: Pure-cubic optical solitons to the Schrödinger equation with three forms of nonlinearities by Sardar subequation method. Results Phys. 48, 106412 (2023)

    Google Scholar 

  • Feng, Yinian, Zhang, Bo., Liu, Yang, Niu, Zhongqian, Fan, Yong, Chen, Xiaodong: A d-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters. IEEE Trans. Terahertz Sci. Technol. 12(6), 678–681 (2022)

    ADS  Google Scholar 

  • Fernández-Dıaz, J.M., Palacios, S.L.: Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion. Opt. Commun. 178(4–6), 457–460 (2000)

    ADS  Google Scholar 

  • Goyal, A., Gupta, R., Kumar, C.N., Raju, T.S., et al.: Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(6), 063830 (2011)

    ADS  Google Scholar 

  • Guo, Chaoqun, Jiangping, Hu., Yanzhi, Wu., Čelikovskỳ, Sergej: Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. In: Regular Papers, IEEE Transactions on Circuits and Systems I (2023a)

  • Guo, Chaoqun, Jiangping, Hu., Hao, Jiasheng, Celikovsky, Sergej, Xiaoming, Hu.: Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions. Kybernetika 59, 342–364 (2023b)

    MathSciNet  Google Scholar 

  • Hao, R.Y., Li, L., Li, Z.H., Yang, R.C., Zhou, G.S.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic-quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245(1–6), 383–390 (2005)

    ADS  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    ADS  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II, Normal dispersion. Appl. Phys. Lett. 23(4), 171–172 (1973)

    ADS  Google Scholar 

  • Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrödinger equation. Superlattice. Microst. 112, 164–179 (2017)

    ADS  Google Scholar 

  • Inc, M., Rezazadeh, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.M.: New solitary wave solutions for the conformable Klein–Gordon equation with quantic nonlinearity. AIMS Math. 5(6), 6972–6984 (2020)

    MathSciNet  Google Scholar 

  • Jin, Hai-Yang., Wang, Zhi-An.: Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Eq. 260(1), 162–196 (2016)

    ADS  MathSciNet  Google Scholar 

  • Kai-Da, Xu., Guo, Ying-Jiang., Liu, Yiqun, Deng, Xianjin, Chen, Qiang, Ma, Zhewang: 60-Ghz compact dual-mode on-chip bandpass filter using GAAS technology. IEEE Electron Dev. Lett. 42(8), 1120–1123 (2021)

    ADS  Google Scholar 

  • Karpman, V.I.: Evolution of solitons described by higher-order nonlinear Schrödinger equations. Phys. Lett. A 244(5), 397–400 (1998)

    ADS  MathSciNet  Google Scholar 

  • Karpman, V..I.., Shagalov, A..G..: Evolution of solitons described by the higher-order nonlinear Schrödinger equation. ii. Numerical investigation. Phys. Lett. A 254((6), 319–324 (1999)

    ADS  Google Scholar 

  • Kruglov, V.I.: Solitary wave and periodic solutions of nonlinear Schrödinger equation including higher order dispersions. Opt. Commun. 472, 125866 (2020)

    Google Scholar 

  • Kruglov, V.I., Harvey, J.D.: Solitary waves in optical fibers governed by higher-order dispersion. Phys. Rev. A 98, 1–7 (2018)

    Google Scholar 

  • Kumar, H., El-Ganaini, S.: Traveling and localized solitary wave solutions of the nonlinear electrical transmission line model equation. Eur. Phys. J. Plus 135(9), 1–25 (2020)

    Google Scholar 

  • Li, Huicong, Peng, Rui, Wang, Zhi-an: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78(4), 2129–2153 (2018)

    MathSciNet  Google Scholar 

  • Liu, J.G., Eslami, M., Rezazadeh, H., Mirzazadeh, M.: The dynamical behavior of mixed type lump solutions on the (3+1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation. Int. J. Nonlinear Sci. Num. 21(7–8), 661–665 (2020)

    MathSciNet  Google Scholar 

  • Manafian, J., Bolghar, P., Mohammadalian, A.: Abundant soliton solutions of the resonant nonlinear Schrödinger equation with time-dependent coefficients by ITEM and He’s semi-inverse method. Opt. Quant. Electron. 49(10), 322 (2017)

    Google Scholar 

  • Meng, Q., Ma, Q., Shi, Y.: Adaptive fixed-time stabilization for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, (2023)

  • Mirzazadeh, M.: Topological and non-topological soliton solutions to some time-fractional differential equations. Pramana J. Phys. 85, 17–29 (2015)

    ADS  Google Scholar 

  • Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)

    Google Scholar 

  • Muhammad, T., Rehman, S.U., Ahmad, J.: Dynamics of novel exact soliton solutions to Stochastic Chiral nonlinear schrödinger equation. Alex. Eng. J. 79, 568–580 (2023)

    Google Scholar 

  • Osman, M.S., Behzad, G.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

    ADS  Google Scholar 

  • Osman, M.S., Machado, J.A.T., Baleanu, D.: On nonautonomous complex wave solutions described by the coupled Schrödinger–Boussinesq equation with variable-coefficients. Opt. Quant. Electron. 50(2), 1–11 (2018)

    Google Scholar 

  • Özkan, E.M., Akar, M.: Analytical solutions of (2+1)-dimensional time conformable Schrödinger equation using improved sub-equation method. Optik 267, 169660 (2022)

    ADS  Google Scholar 

  • Özkan, E.M., Mehmet, E.: New exact solutions of some important nonlinear fractional partial differential equations with beta derivative. Fractal. Fract. 6(3), 173 (2022)

    Google Scholar 

  • Özkan, E.M., Özkan, A.: The soliton solutions for some nonlinear fractional differential equations with Beta-derivative. Axioms 10(3), 203 (2021)

    Google Scholar 

  • Özkan, E.M., Yildirim, O., Ozkan, A.: On the exact solutions of optical perturbed fractional Schrödinger equation. Phys. Scr. 98(11), 115104 (2023)

    ADS  Google Scholar 

  • Palacios, S.L.: Optical solitons in highly dispersive media with a dual-power nonlinearity law. J. Opt. A: Pure Appl. Opt. 5(3), 180 (2003)

    ADS  Google Scholar 

  • Piché, M., Cormier, J.F., Zhu, X.: Bright optical soliton in the presence of fourth-order dispersion. Opt. Lett. 21(12), 845–847 (1996)

    ADS  Google Scholar 

  • Rezazadeh, H., Inc, M., Baleanu, D.: New solitary wave solutions for variants of the (3 + 1)-Dimensional Wazwaz–Benjamin–Bona–Mahony equations. Front Phys. 8, 00332 (2020)

    Google Scholar 

  • Rezazadeh, H., Abazari, R., Khater, M.M.A., Baleanu, D.: New optical solitons of conformable resonant nonlinear Schrödinger’s equation. Open Phys. 18(1), 761–769 (2020)

    Google Scholar 

  • Roy, S., Bhadra, S.K., Agrawal, G.P.: Perturbation of higher-order solitons by fourth-order dispersion in optical fibers. Opt. Commun. 282(18), 3798–3803 (2009)

    ADS  Google Scholar 

  • Saha, M., Sarma, A.K., Biswas, A.: Dark optical solitons in power law media with time-dependent coefficients. Phys. Lett. A 373(48), 4438–4441 (2009)

    ADS  Google Scholar 

  • Sajid, N., Akram, G.: Optical solitons with full nonlinearity for the conformable space-time fractional Fokas–Lenells equation. Optik 196, 163131 (2019)

    ADS  Google Scholar 

  • Sajid, N., Akram, G.: Novel solutions of Biswas–Arshed equation by newly \(\phi _{6}\)-model expansion method. Optik 211, 164564 (2020)

    ADS  Google Scholar 

  • Savaissou, N., Gambo, B., Rezazadeh, H., Bekir, A., Doka, S.Y.: Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity. Opt. Quant. Electron. 52, 1–16 (2020)

    Google Scholar 

  • Savescu, M., Zhou, Q., Moraru, L., Biswas, A., Moshokoa, S.P., Belic, M.: Singular optical solitons in birefringent nano-fibers. Optik 127(20), 8995–9000 (2016)

    ADS  Google Scholar 

  • Shagalov, A.G.: Modulational instability of nonlinear waves in the range of zero dispersion. Phys. Lett. A 239, 41–45 (1998)

    ADS  MathSciNet  Google Scholar 

  • Triki, H., Kruglov, V.I.: Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media. Phys. Rev. E 101(4), 042220 (2020)

    ADS  Google Scholar 

  • Triki, H., Hayat, T., Aldossary, O.M., Biswas, A.: Bright and dark solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients. Optics Laser Technol. 44(7), 2223–2231 (2012)

    ADS  Google Scholar 

  • Vahidi, J., Zekavatmand, S.M., Rezazadeh, H., Inc, M., Akinlar, M.A., Chu, Y.M.: New solitary wave solutions to the coupled Maccari’s system. Results Phys. 21, 103801 (2021)

    Google Scholar 

  • Yong Zhang, Yu., He, Hongwei Wang, Sun, Lu., Yikai, Su.: Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon. 8(1), 202–208 (2020)

    Google Scholar 

  • Zhang, Ping, Liu, Zehua, Yue, Xiujie, Wang, Penghao, Zhai, Yanchun: Water jet impact damage mechanism and dynamic penetration energy absorption of 2A12 aluminum alloy. Vacuum 206, 111532 (2022)

    ADS  Google Scholar 

  • Zhang, Zhiqiang, Han, Yuru, Xuecheng, Lu., Zhang, Tiangang, Bai, Yujie, Ma, Qiang: Effects of N2 content in shielding gas on microstructure and toughness of cold metal transfer and pulse hybrid welded joint for duplex stainless steel. Mater. Sci. Eng. A 872, 144936 (2023)

    Google Scholar 

  • Zhao, Chenyang, Cheung, Chi Fai, Xu, Peng: High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020)

    Google Scholar 

  • Zhu, S.D.: Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrödinger equation by the extended hyperbolic auxiliary equation method. Chaos, Solitons Fractals 34(5), 1608–1612 (2007)

    ADS  MathSciNet  Google Scholar 

Download references

Funding

The research is supported by: Guangdong basic applied basic research foundation (2021A1515110566), Guangdong philosophy and social science planning project (GD22YGL03), 2021 annual project of Guangzhou philosophy and social science planning (2021GZGJ50).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RL; Data curation: KF; Formal analysis: HR; Validation: KF; Writing-original draft: HR; Writing–review editing: HA.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest Authors’ contributions All authors contributed equally.

Consent to participate

Being the corresponding author, I have consent to participate of all the authors in this research work.

Consent to publish

All the authors are agreed to publish this research work.

Ethical approval

All the authors demonstrating that they have adhered to the accepted ethical standards of a genuine research study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R., Faisal, K., Rezazadeh, H. et al. Soliton solutions of optical pulse envelope \(E(Z,\tau)\) with \(\nu\)-time derivative. Opt Quant Electron 56, 719 (2024). https://doi.org/10.1007/s11082-023-06146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06146-0

Keywords

Navigation