Skip to main content
Log in

Optical soliton solutions to the space–time fractional perturbed Schrödinger equation in communication engineering

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The fractional perturbed nonlinear Schrödinger equation is important to model the dynamics of ultra-short pulses in lasers, solitons behavior in nonlinear optical fiber, signal processing, spectroscopy, etc. In this study, we construct assorted soliton solutions to the aforementioned equation utilizing a couple of analytical approaches, namely the \((G^{\prime}/G,1/G)\)-expansion method and the improved \(F\)-expansion method, to simulate the behavior of localized wave packets known as soliton in the presence of nonlinear perturbation and fractional derivatives through closed-form solutions. The solutions comprise arbitrary parameters, and for appropriate values of these parameters, several typical solitons, including compacton, periodic, irregular-periodic soliton, bell-shaped soliton, V-shaped soliton, kink, and some others are established. We investigate the effect of the fractional-order derivatives, and the graphs confirm that the fractional derivatives affect the amplitude, velocity, and width of the solitons. This study establishes the reliability of the implemented methods for finding soliton solutions of other nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data and materials used to support the findings of this study are included in this article.

References

  • Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W., Sharif, M.A.A., Osman, M.S.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Article  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Khatun, M.M.: Diverse geometric shape solutions of the time fractional nonlinear model used in communication engineering. Alex. Eng. J. 68, 281–290 (2023a)

    Article  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Khatun, M.M.: Optical soliton solutions to the time-fractional Kundu–Eckhaus equation through the-expansion method technique. Opt. Quant. Electron. 55, 291 (2023b)

    Article  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Haque, M.M.: Analytical soliton solutions of the perturbed fractional nonlinear Schrödinger equation with space-time beta derivative by some techniques. Results Phys. 44(106170), 1–12 (2023c)

    Google Scholar 

  • Al-Askar, F.M., Cesarano, C., Mohammed, W.W.: The analytical solutions of stochastic-fractional Drinfel’d–Sokolov–Wilson equations via the -expansion method. Symmetry 14(10), 2105 (2022)

    Article  ADS  Google Scholar 

  • Alsallami, S.A.M., Rizvi, S.T.R., Seadawy, A.R.: Study of stochastic-fractional Drinfel’d–Sokolov–Wilson equation for m-shaped rational, homoclinic breather, periodic and kink-cross rational solutions. Mathematics 11(6), 1504 (2023)

    Article  Google Scholar 

  • Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  • Batool, T., Seadawy, A.R., Rizvi, S.T.R.: Multiple lump solutions and their interactions for an integrable nonlinear dispersionless PDE in vector fields. Nonlinear Anal.: Model. Control 28, 1–24 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Krishnan, E., Zhou, Q., Alfiras, M.: Optical soliton perturbation with Fokas–Lenells equation by mapping methods. Optik 178, 104–110 (2019)

    Article  ADS  Google Scholar 

  • Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13(15), 479–482 (1964)

    Article  ADS  Google Scholar 

  • Fahim, M.R.A., Kundu, P.R., Islam, M.E., Akbar, M.A., Osman, M.S.: Wave profile analysis of a couple of (3+1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach. J. Ocean Eng. Sci. 7(3), 277–279 (2022)

    Article  Google Scholar 

  • Islam, M.S., Khan, K., Akbar, M.A.: Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. J. Egypt. Math. Soc. 25(1), 13–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Khater, M.A.M., Anwar, S., Tariq, K.U., Mohamed, M.S.: Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method. AIP Adv. 11, 025130 (2021)

    Article  ADS  Google Scholar 

  • Khatun, M.M., Akbar, M.A.: New optical soliton solutions to the space-time fractional perturbed Chen–Lee–Liu equation. Results Phys. 46, 106306 (2023)

    Article  Google Scholar 

  • Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu, P.R., Fahim, M.R.A., Islam, M.E., Akbar, M.A.: The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis. Heliyon 7(3), e06459 (2021)

    Article  Google Scholar 

  • Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., Li, C.: Chaotic oppositional sine-cosine method for solving global optimization problems. Eng. Comput. 38, 1223–1239 (2022)

    Article  Google Scholar 

  • Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scr. 94(11), 115212 (2019)

    Article  ADS  Google Scholar 

  • Martìnez, H.Y., Aguilar, F.G.: Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. Waves Rand. Complex Media 29(4), 678–693 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Osman, M.S., Almusawa, H., Tariq, K.U., Anwar, S., Kumar, S., Younis, M., Ma, W.X.: On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci. 7(5), 431–443 (2022)

    Article  Google Scholar 

  • Pankaj, R.D.: New analytical method and application for solve the nonlinear equation. Punjab Univer. J. Math. 54(9), 565–573 (2022)

    Article  MathSciNet  Google Scholar 

  • Rasheed, N.M., Al-Amr, M.O., Az-Zo’bi, E.A., Tashtoush, M.A., Akinyemi, L.: Stable optical solitons for the higher-order non-Kerr NLSE via the modified simple equation method. Mathematic 9(16), 1986 (2021)

    Google Scholar 

  • Raza, N., Afzal, J., Bekir, A., Razazadeh, H.: Improved -expansion approach for Burgers equation in nonlinear dynamical model of ion acoustic waves. Braz. J. Phys. 50, 254–262 (2020)

    Article  ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Younis, M., Abbas, S.O., Khaliq, A.: Optical dromions for complex Ginzburg Landau model with nonlinear media. Appl. Math.-A J. Chin. Univer. 38, 111–125 (2023a)

    Article  MathSciNet  MATH  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Bashir, A.: Optical soliton solutions and various breathers lump interaction solutions with periodic wave for nonlinear Schrödinger equation with quadratic nonlinear susceptibility. Opt. Quant. Electron. 55, 286 (2023b)

    Article  Google Scholar 

  • Russell, J.S.: Report on waves: Made to the meeting of the British Association in 1842–1843. London, UK. (1845)

  • Sahoo, S., Ray, S.S., Abdou, M.A.: New exact solutions for time-fractional Kaup–Kupershmidt equation using improved -expansion and extended-expansion methods. Alex. Eng. J. 59(5), 3105–3110 (2020)

    Article  Google Scholar 

  • Saqib, M., Seadawy, A.R., Khaliq, A., Rizvi, S.T.R.: Efficiency and stability analysis on nonlinear differential dynamical systems. Int. J. Mod. Phys. B 37(10), 2350098 (2023)

    Article  ADS  Google Scholar 

  • Savaissou, N., Gambo, B., Rezazadeh, H., Bekir, A., Doka, S.Y.: Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity. Opt. Quant. Electron. 52, 318 (2020)

    Article  Google Scholar 

  • Seadawy, A.R., Rizvi, S.T.R., Zahed, H.: Stability analysis of the rational solutions, periodic cross-rational solutions, rational kink cross-solutions, and homoclinic breather solutions to the KdV dynamical equation with constant coefficients and their applications. Mathematics 11(5), 1074 (2023)

    Article  Google Scholar 

  • Sulaiman, T.A., Bulut, H., Baskonus, H.M.: Optical solitons to the fractional perturbed NLSE in nano-fibers. Disc. Contin. Dyn. Sys.-S 13(3), 925 (2020)

    MathSciNet  MATH  Google Scholar 

  • Wang, M.Y.: Optical solitons of the perturbed nonlinear Schrödinger equation in Kerr media. Optik 243, 167382 (2021)

    Article  ADS  Google Scholar 

  • Wang, K., Liu, S.: Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation. J. Nonlinear Sci. Appl. 9, 2419–2433 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Yépez-Martínez, H., Pashrashid, A., Gómez-Aguilar, J.F., Akinyemi, L., Razazadeh, H.: The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation. Mod. Phys. Lett. B 36(8), 2150597 (2022)

    Article  ADS  Google Scholar 

  • Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

  • Zakharov, V.E., Manakov, S.V.: On the complete integrability of a nonlinear Schrödinger equation. J. Theor. Math. Phys. 19(3), 551–559 (1974)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees for their insightful remarks and recommendations to improve the article.

Funding

This work is supported by the Research Grant No.: A-124/5/52/RU/Science-46/2022-2023 and the authors acknowledge this support.

Author information

Authors and Affiliations

Authors

Contributions

M. Ali Akbar: Conceptualization, Resources, Methodology, Project administration, Funding acquisition, Supervision, Writing-Original Draft. Mst. Munny Khatun: Data Curation, Formal Analysis, Software, Investigation, Validation, Visualization, Writing-Review Editing.

Corresponding author

Correspondence to M. Ali Akbar.

Ethics declarations

Conflict of interest

The authors confirm that they have no relevant financial or non-financial competing interests. All the authors with the consultation of each other completed this research and drafted the manuscript together. All authors have read and approved the final manuscript.

Ethical approval

This article does not involve with any human or animal studies. We also confirm that, we have read and abided by the statement of ethical standards for the manuscript submission to this journal and that the manuscript has not been copyrighted, published, or submitted elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, M.A., Khatun, M.M. Optical soliton solutions to the space–time fractional perturbed Schrödinger equation in communication engineering. Opt Quant Electron 55, 645 (2023). https://doi.org/10.1007/s11082-023-04911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04911-9

Keywords

Navigation