Skip to main content
Log in

Functionalized graphene quantum dots with ZnO as a humidity sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) are a cutting-edge zero-dimensional (0D) material with a distinct electrical characteristic. The band gap of GQDs can be tuned due to functionalization by function group and/or metal oxides depending on the application. In this study, the impact of functionalizing GQDs by ZnO on their humidity-sensing characteristics was investigated. The effects of functionalizing GQDs with ZnO on their electrical properties and responsiveness to humidity were investigated using density functional theory (DFT). The results demonstrate that in the presence of water molecules, ZHEX C54–ZnO enhances the total dipole moment (TDM) and reduces the band gap energy ∆E to 1.921 Debaye and 0.927eV, respectively. As a result, GQDs ZHEX C54–ZnO appeared to be a suitable choice for humidity sensor applications. Furthermore, the adsorption energies for the optimized geometries were estimated to investigate the appropriateness as well as the effectiveness of the GQDs/ZnO complexes for moisture sensing. In addition, the charge transfer was investigated by utilizing molecular electrostatic potential (MESP) for a more in-depth examination of reactivity and sensitivity. For AHEX C42/OZn/2H2O, ZHEX C54/ZnO/2H2O, and ZTRI C46/ZnO/2H2O, the reactivity of the GQDs/ZnO surface for moisture adsorption was observed to be considerably raised. The results showed that the sensing performance of GQDs functionalized with ZnO makes them ideal materials for humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AI, HAE and MAEA. The first draft of the manuscript was written by Asmaa Ibrahim and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hend A. Ezzat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A., Aal, M.A.E. & Ezzat, H.A. Functionalized graphene quantum dots with ZnO as a humidity sensor. Opt Quant Electron 56, 467 (2024). https://doi.org/10.1007/s11082-023-05795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05795-5

Keywords

Navigation