Skip to main content
Log in

Enhancing entanglement and non-Markovianity in an optomechanical system via atom quasi-random walk motion

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 10 April 2024

This article has been updated

Abstract

Optomechanical cavities are one of the most important systems for observing quantum phenomena. In this paper, we investigated the quantum aspect of an optomechanical system made up of a two-level atom under two laser pump stimulation. One of the laser pumps drives the optical cavity, known as a longitudinal pump, while the second laser was used to excite the atom inside the cavity, directly and called as transverse pump. We observe the quasi-random walk of atom inside the cavity. Next, entanglement evolution among the atomic states and the other parts of the system with the von Neumann entropy measure was investigated. The study was done for distinctive atomic states in a strong coupling regime between the atom and field of cavity. Also, we investigated the evidence for non-Markovian behavior with trace distance measure. Our results demonstrate that the random walk of the atom can offer assistance to us to upgrade the entanglement between the inside atom mode and the other parts of the system for a long time. Furthermore, adding atomic motion provides evidence for the non-Markovian treatment of the system at the initial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

This declaration is “not applicable

Change history

References

  • Abramovici, A., et al.: LIGO: The laser interferometer gravitational-wave observatory. Science 256, 325 (1992)

    Article  ADS  Google Scholar 

  • Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  • Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  • Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Entanglement criteria of two two-level atoms interacting with two coupled modes. Int. J. Theor. Phys. 54, 2839–2854 (2015)

    Article  Google Scholar 

  • Bai, C.H., Wang, D.Y., Zhang, S., Liu, S., Wang, H.F.: Atom-mirror entanglement: modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system, Ann. Phys. 1800271 (2019).

  • Barzanjeh, Sh., Naderi, M.H., Soltanolkotabi, M.: Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Phys. Rev. A 84, 063850 (2011)

    Article  ADS  Google Scholar 

  • Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Bose, S., Jacobs, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Article  ADS  Google Scholar 

  • Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Parametric oscillatory instability in Fabry-Perot interferometer. Phys. Lett. A 287, 331 (2001)

    Article  ADS  Google Scholar 

  • Brennete, F., Donner, T., Ritter, S., Bourdel, T., Köhl, M., Esslinger, T.: Cavity QED with a bose-einstein condensate. Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  • Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford. (2002)

    Google Scholar 

  • Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  • Brif, C., Mann, A.: Quantum statistical properties of the radiation field in a cavity with a movable mirror. J. Opt. B Quantum Semi Class. Opt. 2, 53 (2000)

    Article  ADS  Google Scholar 

  • Chen, X., Liu, Y.C., Peng, P., Zhi, Y., Xiao, Y.F.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015)

    Article  ADS  Google Scholar 

  • Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  • Cohen-Tannoudji, C.: Nobel lecture, nobel lecture: manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  • Deutsch, D., Ekert, A.: Quantum computation. Phys. World 11(3), 47 (1998)

    Article  Google Scholar 

  • Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, New York. (2004)

    Google Scholar 

  • Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 050307(R) (2008)

    Article  ADS  Google Scholar 

  • Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  • Hammerer, K., Wallquist, M., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Zoller, P., Ye, J., Kimble, H.J.: Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009)

    Article  ADS  Google Scholar 

  • Hill, S.A., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  • Hinkel, T., Ritsch, H., Genes, C.: A realization of a quasi-random walk for atoms in time-dependent optical potentials. Atoms 3(3), 433–449 (2015)

    Article  ADS  Google Scholar 

  • Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  • Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Ian, H., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  • Imamog, A., Awschalom, D.D., Burkard, G., Di Vincenzo, D.P., Loss, D.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)

    Article  ADS  Google Scholar 

  • Imran, M., Abbas, T., Islam, R., Ikram, M.: Cavity QED based tuneable, delayed-choice quantum eraser. Annals of Phys. 364, 160 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Imran, M., Islam, R., Saeed, M.H., Ikram, M.: Quantum three-box paradox: a proposal for atom optics implementation. Quantum Inf. Process. 20, 1–18 (2021)

    Article  Google Scholar 

  • Islam, R., Haider, S.A., Abbas, T., Ikram, M.: Matter-wave teleportation via cavity-field trans-pads. Laser Phys. Lett. 13, 105204 (2016)

    Article  ADS  Google Scholar 

  • Islam, R., Ikram, M., Mujtaba, A.H., Abbas, T.: Double slit experiment with quantum detectors: mysteries, meanings, misinterpretations, and measurement. Laser Phys. Lett. 15, 015208 (2018)

    Article  ADS  Google Scholar 

  • Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comp. Phys. Commun. 183, 1760–1772 (2012)

    Article  ADS  Google Scholar 

  • Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comp. Phys. Commun. 184, 1234 (2013)

    Article  ADS  Google Scholar 

  • Kumar, A.: Multiparty quantum mutual information: an alternative definition. Phys. Rev. A 96, 012332 (2017)

    Article  ADS  Google Scholar 

  • Laine, E.M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  • Leibrandt, D.R., Labaziewicz, J., Vuletic, V., Chuang, I.L.: Cavity sideband cooling of a single trapped ion. Phys. Rev. Lett. 103, 103001 (2009)

    Article  ADS  Google Scholar 

  • Man’ko, V.I., Marmo, G., Zaccaria, F., Sudarshan, E.C.G.: f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  • Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 159903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Mc, J.D., Cullen, P.M., Wright, E.M.: Mirror confinement and control through radiation pressure. Opt. Lett. 9, 193 (1984)

    Article  ADS  Google Scholar 

  • Meystre, P., Wright, E.M., Cullen, J.D.M., Vignes, E.: Theory of radiation-pressure-driven interferometers. J. Opt. Soc. Am. 2, 1830 (1985)

    Article  ADS  Google Scholar 

  • Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  • Mohammadi, M., Jami, S.: Time evolution of entanglement and trace distance in an atom-cavity system described with a random walk and non-random walk states.". Optik 181, 582–587 (2019)

    Article  ADS  Google Scholar 

  • Mohammadi, M., Jami, S., KhazaeiNezhad, M.: Entanglement dynamics in the atom-cavity system with atom quasi-random walk behavior. Opt. Quantum Electron. 54, 12 (2022)

    Article  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge, England. (2000)

    Google Scholar 

  • Phillips, W.D.: Nobel lecture, nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  • Pirandola, S., Mancini, S., Vitali, D.: Erratum: Conditioning two-party quantum teleportation within a three-party quantum channel. Phys. Rev. A 71, 042326 (2005)

    Article  ADS  Google Scholar 

  • Poldy, R., Buchler, B.C., Close, J.D.: Single-atom detection with optical cavities. Phys. Rev. A 78, 013640 (2008)

    Article  ADS  Google Scholar 

  • Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge. (1997)

    Book  Google Scholar 

  • Shenvi, N., Kempe, J., Birgitta Whaley, K.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  • Uhlmann, A.: Fidelity, and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  • Wallquist, M., Hammerer, K., Zoller, P., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Ye, J., Kimble, H.J.: Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 023816 (2010)

    Article  ADS  Google Scholar 

  • Wang, J., Manouchehri, K.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    Google Scholar 

  • Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  • Zhang, W.Z., Cheng, J., Li, W.D., Zhou, L.: Optomechanical cooling in the non-Markovian regime. Phys. Rev. A 93, 063853 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

This declaration is “not applicable”.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. They work on it with together as the same.

Corresponding author

Correspondence to Safa Jami.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

This declaration is “not applicable”.

Competing interests: This declaration is “not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original version of the article the affiliation link for the author Safa Jami was incorrect.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Jami, S. & Khazaei Nezhad, M. Enhancing entanglement and non-Markovianity in an optomechanical system via atom quasi-random walk motion. Opt Quant Electron 56, 258 (2024). https://doi.org/10.1007/s11082-023-05707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05707-7

Keywords

Navigation