Skip to main content
Log in

Characterizing graphene/HfO2 and HfO2/graphene interfaces through Raman spectroscopy analysis

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present a comparative analysis of the Raman spectra of two heterostructures: Si/SiO2/HfO2/Graphene and Si/SiO2/Graphene/HfO2. In the former configuration, the Graphene layer is transferred onto the 5 nm-thick HfO2 layer, while the latter configuration involves the growth of à 5 nm-thick HfO2 layer by atomic layer deposition (ALD) on the Graphene layer. The analysis of the Raman spectra has demonstrated significant differences between the interfaces Graphene/HfO2 and HfO2/Graphene. The distinct Raman signatures observed emphasize the critical role played by the specific order and arrangement of the Graphene and HfO2 layers within the heterostructure, which impacts the charge transfer between these two materials and the presence or absence of strains. The Raman spectra corresponding to different thickness of the HfO2 layer (5, 10, 15, and 20 nm) in Si/SiO2/Graphene/HfO2 heterostructure shows the appearance of a small shoulder on the low-frequency side of the G band around 1523 cm-1. Furthermore, it was observed that the intensity of this shoulder diminishes as the thickness of the HfO2 layer increases. The observed discrepancies between spectra, related to the experimental conditions employed for sample preparation, are attributed to the interplay of two phenomena: the transfer of charges among Graphene, HfO2, and SiO2, as well as the emergence of constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adelmann, C., Sriramkumar, V., Van Elshocht, S., Lehnen, P., Conard, T., De Gendt, S.: Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films. Appl. Phys. Lett. 91, 37–40 (2007). https://doi.org/10.1063/1.2798498

    Article  Google Scholar 

  • Alyobi, M.M.M., Barnett, C.J., Cobley, R.J.: Effects of thermal annealing on the properties of mechanically exfoliated suspended and on-substrate few-layer graphene. Crystals. 7, 1–11 (2017). https://doi.org/10.3390/cryst7110349

    Article  Google Scholar 

  • Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C., Lau, C.N.: Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009). https://doi.org/10.1038/nnano.2009.191

    Article  ADS  Google Scholar 

  • Ben Maad, Y., Durnez, A., Ajlani, H., Madouri, A., Oueslati, M.: Modulation of electron transfer in Si/SiO2/HfO2/Graphene by the HfO2 thickness. Appl. Phys. A Mater. Sci. Process. 126, 1–9 (2020)

    Article  Google Scholar 

  • Bruna, M., Ott, A.K., Ijäs, M., Yoon, D., Sassi, U., Ferrari, A.C.: Doping dependence of the Raman spectrum of defected graphene. ACS Nano. 8, 7432–7441 (2014). https://doi.org/10.1021/nn502676g

    Article  Google Scholar 

  • Castro Neto, A.H., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Guinea, F.: The lectronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  • Craciun, M.F., Russo, S., Yamamoto, M., Tarucha, S.: Tuneable electronic properties in graphene. Nano Today. 6, 42–60 (2011). https://doi.org/10.1016/j.nantod.2010.12.001

    Article  Google Scholar 

  • Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S.K., Waghmare, U.V., Novoselov, K.S., Krishnamurthy, H.R., Geim, A.K., Ferrari, A.C., Sood, A.K.: Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). https://doi.org/10.1038/nnano.2008.67

    Article  Google Scholar 

  • Del Corro, E., Taravillo, M., Baonza, V.G.: Nonlinear strain effects in double-resonance Raman bands of graphite graphene and related materials. Phys. Rev. B Condens. Matter Mater. Phys. 85, 1–5 (2012)

    Google Scholar 

  • Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). https://doi.org/10.1021/nl300901a

    Article  ADS  Google Scholar 

  • Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation Evidence for graphane. Science 80(323), 610–613 (2009)

    Article  ADS  Google Scholar 

  • Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B Condens. Matter Mater. Phys. 76, 1–4 (2007)

    Article  Google Scholar 

  • Falkovsky, LA: Optical properties of graphene. (2008). https://doi.org/10.1088/1742-6596/129/1/012004

  • Feng, L.P., Li, N., Tian, H., Liu, Z.T.: Current conduction mechanisms in HfO2 and SrHfON thin films prepared by magnetron sputtering. J. Mater. Sci. 49, 1875–1881 (2014). https://doi.org/10.1007/s10853-013-7876-6

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1–4 (2006)

    Article  Google Scholar 

  • Geim, A.K.: Graphene: Status and prospects. Science 80(324), 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  ADS  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  • Giannazzo, F., Schilirò, E., Nigro, R.: Lo RF Yakimova R (2020) Atomic layer deposition of high-k insulators on epitaxial graphene A review. Appl Sci. 10, 14–17 (2020)

    Article  Google Scholar 

  • Hu, Z., Prasad Sinha, D., Lee, J.U., Liehr, M.: Substrate dielectric effects on graphene field effect transistors. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4879236

    Article  Google Scholar 

  • Jeong, S.J., Gu, Y., Heo, J., Yang, J., Lee, C.S., Lee, M.H., Lee, Y., Kim, H., Park, S., Hwang, S.: Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep20907

    Article  Google Scholar 

  • Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K.: Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94, 1–4 (2009). https://doi.org/10.1063/1.3077021

    Article  Google Scholar 

  • Konar A, Fang T, Jena D (2010) Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B Condens. Matter Mater. Phys. 82, 1–7 (2010)

  • Lee, J.E., Ahn, G., Shim, J., Lee, Y.S., Ryu, S.: Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012). https://doi.org/10.1038/ncomms2022

    Article  ADS  Google Scholar 

  • Liang, X., Sperling, B. a, Calizo, I., Cheng, G., Hacker, C.A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Walker, A.R.H., Liu, Z., Peng, L., Richter, C. a: ACS NANO 2011, 5 (11) 9144.(2011)

  • Lukosius, M., Dabrowski, J., Wolff, A., Kaiser, D., Mehr, W., Lupina, G.: Direct growth of HfO 2 on graphene by CVD. J Vac Sci. Technol. B. DOI 10(1116/1), 4905728 (2015)

    Google Scholar 

  • Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of Teflon. Small. 6, 2877–2884 (2010). https://doi.org/10.1002/smll.201001555

    Article  Google Scholar 

  • Nam, S.W., Yoo, J.H., Nam, S., Choi, H.J., Lee, D., Ko, D.H., Moon, J.H., Ku, J.H., Choi, S.: Influence of annealing condition on the properties of sputtered hafnium oxide. J. Non. Cryst. Solids. 303, 139–143 (2002). https://doi.org/10.1016/S0022-3093(02)00976-6

    Article  ADS  Google Scholar 

  • Pirkle, A., Wallace, R.M., Colombo, L.: In situ studies of Al2O3 and HfO2 dielectrics on graphite. Appl. Phys. Lett. 95, 8–11 (2009). https://doi.org/10.1063/1.3238560

    Article  Google Scholar 

  • Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene The new two-dimensional nanomaterial. Angew. Chemie Int. Ed. 48, 7752–7777 (2009). https://doi.org/10.1002/anie.200901678

    Article  Google Scholar 

  • Robertson, J., Wallace, R.M.: High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Reports. 88, 1–41 (2015). https://doi.org/10.1016/j.mser.2014.11.001

    Article  Google Scholar 

  • Scopel, W.L., Fazzio, A., Miwa, R.H., Schmidt, T.M.: Graphene on amorphous HfO2 surface an ab initio investigation. Phys. Rev. B Condens. Matter Mater. Phys. 87, 3–8 (2013)

    Article  Google Scholar 

  • Tuinstra, F., Koenig, L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  ADS  Google Scholar 

  • Vervuurt, R.H.J., Kessels, W.M.M.E.: A atomic layer deposition for graphene device integration. Adv. Mater. Interfaces. 4, 1–19 (2017). https://doi.org/10.1002/admi.201700232

    Article  Google Scholar 

  • Wang, W.X., Liang, S.H., Yu, T., Li, D.H., Li, Y.B., Han, X.F.: The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3536670

    Article  Google Scholar 

  • Yang, J., Hu, P., Yu, G.: Perspective of graphene-based electronic devices: Graphene synthesis and diverse applications. APL Mater (2019). https://doi.org/10.1063/1.5054823

    Article  Google Scholar 

  • Yang, M., Ping, Y., and Wang, S.: Interface between Graphene and High-K Dielectrics. In: Graphene Science Handbook pp. 15-24. (2016)

  • Yoon, D., Son, Y.-W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011). https://doi.org/10.1021/nl201488g

    Article  ADS  Google Scholar 

  • Yu, H., Wang, J., Yan, S., Yu, T., Zou, Z.: Elements doping to expand the light response of SrTiO3. J. Photochem. Photobiol. A Chem. 275, 65–71 (2014). https://doi.org/10.1016/j.jphotochem.2013.10.014

    Article  Google Scholar 

  • Zhang, C., Xie, D., Xu, J.L., Li, X.M., Sun, Y.L., Dai, R.X., Li, X., Zhu, H.W.: HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4932645

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YBM and AM elaborated the Graphene by CVD and transferred it to the substrates. AD ensured the growth of HfO2 layers by ALD onto substrates and graphene. YBM and HA made the Raman Measurements. All the authors discussed the experimental results and contributed to their interpretation. YBM and HA wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hosni Ajlani.

Ethics declarations

Competing interests

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Maad, Y., Ajlani, H., Durnez, A. et al. Characterizing graphene/HfO2 and HfO2/graphene interfaces through Raman spectroscopy analysis. Opt Quant Electron 55, 1275 (2023). https://doi.org/10.1007/s11082-023-05536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05536-8

Keywords

Navigation