Skip to main content
Log in

Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research, we address the problem of solving (1 + 1)-dimensional fractional coupled nonlinear Schrödinger equations (FCNLSE) with beta derivatives, which are essential for understanding wave dynamics in various physical systems. These equations have significant importance in practical applications, particularly in the design of optical fiber networks, signal processing, and control systems, where precise modeling of wave behavior is crucial. To tackle this problem, we employ two powerful mathematical methodologies, the modified exponential function method and the rational exp(\(-\varphi\)(\(\eta\)))-expansion method. These methods are known for their ability to provide accurate analytical solutions to fractional nonlinear physical models, making them invaluable tools for solving complex mathematical problems. The growing popularity of fractional nonlinear partial differential equations stems from their versatile applicability, which extends to diverse domains of science and engineering. To approach the FCNLSE problem, we leverage a well-suited fractional complex wave transformation, effectively translating the original equation into a more tractable ordinary differential equation. This transformation sets the stage for the discovery of a wide range of solutions that encompass compactons, periodic cross-kink structures, peakons, as well as rational and cuspons solutions. These solutions are expressed in terms of rational, hyperbolic, trigonometric, and exponential functions, providing a rich mathematical tapestry to analyze and interpret. To enhance our comprehension of the physical significance of these solutions, we employ advanced visualization techniques, including the generation of three-dimensional, two-dimensional, and contour plots. These graphical representations offer a vivid insight into the dynamic behavior of the obtained solutions. Our findings not only emphasize the precision and effectiveness of the applied methodologies but also contribute significantly to the understanding of various physical phenomena. These novel solutions extend beyond previous efforts in the literature by introducing beta derivatives as a modeling tool for FCNLSE. Additionally, we uncover solution types that have not been previously reported, such as periodic cross-kink structures, expanding the landscape of possible solutions for FCNLSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  • Abboubakar, H., Kumar, P., Rangaig, N.A., Kumar, S.: A malaria model with Caputo–Fabrizio and Atangana–Baleanu derivatives. Int. J. Model. Simul. Sci. Comput. 12, 2150013 (2021)

    Google Scholar 

  • Abd Elaziz, M., Yousri, D., Al-qaness, M.A., AbdelAty, A.M., Radwan, A.G., Ewees, A.A.: A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation. Eng. Appl. Artif. Intell. 98, 104105 (2021)

    Google Scholar 

  • Abdullah, F.A., Islam, M.T., Gmez-Aguilar, J.F., Akbar, M.A.: Impressive and innovative soliton shapes for nonlinear Konno–Oono system relating to electromagnetic field. Opt. Quantum Electron. 55, 69 (2023)

    Google Scholar 

  • Akbar, M.A.: Assessment of assorted soliton solutions and impacts analysis of fractional derivatives on wave profiles. Results Phys. 49, 106501 (2023)

    Google Scholar 

  • Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Mahmoud, W., Al Sharif, M.A., Osman, M.S.: Dynamical behavior of solitons of the perturbed nonlinear Schrdinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Google Scholar 

  • Akram, M., Muhammad, G., Ahmad, D.: Analytical solution of the Atangana–Baleanu–Caputo fractional differential equations using Pythagorean fuzzy sets. Granul. Comput. 1-21 (2023)

  • Alam, M.N., Akbar, M.A., Hoque, M.F.: Exact travelling wave solutions of the (3 + 1)-dimensional mKdV-ZK equation and the (1 + 1)-dimensional compound KdVB equation using the new approach of generalized \(G^{^{\prime }}/G (G^{^{\prime }}/G)\)-expansion method. Pramana 83, 317–329 (2014)

    ADS  Google Scholar 

  • Al-Askar, F.M., Mohammed, W.W., Albalahi, A.M., El-Morshedy, M.: The Impact of the Wiener process on the analytical solutions of the stochastic (2 + 1)-dimensional breaking soliton equation by using tanh–coth method. Mathematics 10, 817 (2022)

    Google Scholar 

  • Al-Shawba, A.A., Abdullah, F.A., Azmi, A., Ali Akbar, M., Nisar, K.S.: Compatible extension of the (G’/G)-expansion approach for equations with conformable derivative. Heliyon 9(5), e15717 (2023)

    Google Scholar 

  • Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi-inverse variational principle. Ukr. J. Phys. Opt 22, 123 (2021)

    Google Scholar 

  • Arora, S., Mathur, T., Agarwal, S., Tiwari, K., Gupta, P.: Applications of fractional calculus in computer vision: a survey. Neurocomputing 489, 407–428 (2022)

    Google Scholar 

  • Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. 1-8, (2016). arXiv:1602.03408

  • Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter–Saxton equation: a model of neumatic liquid crystal. Open Phys. 14, 145–149 (2016)

    Google Scholar 

  • Aydin, M.E., Mihai, A., Yokus, A.: Applications of fractional calculus in equiaffine geometry: plane curves with fractional order. Math. Methods Appl. Sci. 44, 13659–13669 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Baleanu, D., Mohammadi, H., Rezapour, S.: A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020, 1–27 (2020a)

    MathSciNet  MATH  Google Scholar 

  • Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020b)

    MathSciNet  MATH  Google Scholar 

  • Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. Sov. J. Exp. Theor. Phys. Lett. 3, 307 (1966)

    Google Scholar 

  • Bilal, M., Ahmad, J.: New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods. Results Phys. 25, 104230 (2021)

    Google Scholar 

  • Biswas, A., Asma, M., Guggilla, P., Mullick, L., Moraru, L., Ekici, M., Belic, M.R.: Optical soliton perturbation with Kudryashov’s equation by semiinverse variational principle. Phys. Lett. A 384, 126830 (2020)

    MATH  Google Scholar 

  • Chen, H., Shi, Y., Zhang, J., Zhao, Y.: Sharp error estimate of a Grünwald–Letnikov scheme for reaction-subdiffusion equations. Numer. Algorithms 1–13 (2022)

  • Christopher, B.: Chasing Waves: The Story of John Scott Russell and the KdV Equation (2018)

  • Di Paola, M., Reddy, J.N., Ruocco, E.: On the application of fractional calculus for the formulation of viscoelastic Reddy beam. Meccanica 55, 1365–1378 (2020)

    MathSciNet  MATH  Google Scholar 

  • El-Zahar, E.R., Alotaibi, A.M., Ebaid, A., Aljohani, A.F., Aguilar, J.G.: The Riemann–Liouville fractional derivative for Ambartsumian equation. Results Phys. 19, 103551 (2020)

    Google Scholar 

  • Fahim, M.R.A., Kundu, P.R., Islam, M.E., Akbar, M.A., Osman, M.S.: Wave profile analysis of a couple of (3+ 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach. J. Ocean Eng. Sci. 7, 272–279 (2022)

    Google Scholar 

  • Fibich, G., Merle, F.: Self-focusing on bounded domains. Phys. D Nonlinear Phenom. 155, 132–158 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B 33, 1950106 (2019)

    MathSciNet  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Google Scholar 

  • Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134, 334 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11, 20 (2018)

    MATH  Google Scholar 

  • Ghanbari, B., Günerhan, H., Ilhan, O.A., Baskonus, H.M.: Some new families of exact solutions to a new extension of nonlinear Schrdinger equation. Phys. Scr. 95, 075208 (2020)

    Google Scholar 

  • Gurefe, Y.: The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Rev. Mex. de fsica 66, 771–781 (2020)

    MathSciNet  Google Scholar 

  • Haq, I.U., Ali, N., Nisar, K.S.: An optimal control strategy and Grünwald–Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model. Math. Model. Numer. Simul. Appl. 2, 108–116 (2022)

    Google Scholar 

  • He, J.H., El-Dib, Y.O.: Homotopy perturbation method for Fangzhu oscillator. J. Math. Chem. 58, 2245–2253 (2020)

    MathSciNet  MATH  Google Scholar 

  • He, C.H., El-Dib, Y.O.: A heuristic review on the homotopy perturbation method for non-conservative oscillators. J. Low Freq. Noise Vib. Active Control 41, 572–603 (2022)

    Google Scholar 

  • He, Y., Ling, J., Li, M., Lin, Q.: Perfect soliton crystals on demand. Laser Photonics Rev. 14, 1900339 (2020). https://doi.org/10.1002/lpor.201900339

    Article  ADS  Google Scholar 

  • Hosseini, K., Sadri, K., Mirzazadeh, M., Ahmadian, A., Chu, Y.M., Salahshour, S.: Reliable methods to look for analytical and numerical solutions of a nonlinear differential equation arising in heat transfer with the conformable derivative. Math. Methods Appl. Sci. 46, 11342–11354 (2023)

    ADS  MathSciNet  Google Scholar 

  • Hussein, M.A.: A review on integral transforms of the fractional derivatives of Caputo–Fabrizio and Atangana–Baleanu. Eurasian J. Media Commun. 7, 17–23 (2022)

    Google Scholar 

  • Hyder, A.A., Barakat, M.A.: General improved Kudryashov method for exact solutions of nonlinear evolution equations in mathematical physics. Phys. Scr. 95, 045212 (2020)

    Google Scholar 

  • Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6, 4 (2021)

    Google Scholar 

  • Islam, M.S., Khan, K., Akbar, M.A., Mastroberardino, A.: A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations. R. Soc. Open Sci. 1, 140038 (2014)

    Google Scholar 

  • Islam, M.T., Akter, M.A., Ryehan, S., Gmez-Aguilar, J.F., Akbar, M.A.: A variety of solitons on the oceans exposed by the Kadomtsev Petviashvili-modified equal width equation adopting different techniques. J. Ocean Eng. Sci. (2022a). https://doi.org/10.1016/j.joes.2022.07.001

  • Islam, M.T., Akbar, M.A., Ahmad, H., Ilhan, O.A., Gepreel, K.A.: Diverse and novel soliton structures of coupled nonlinear Schrdinger type equations through two competent techniques. Mod. Phys. Lett. B 36, 2250004 (2022b). https://doi.org/10.1142/S021798492250004X

    Article  ADS  Google Scholar 

  • Islam, M.T., Akter, M.A., Gmez-Aguilar, J.F., Akbar, M.A., Perez-Careta, E.: Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrodinger equations. Opt. Quantum Electron. 54, 520 (2022c)

    Google Scholar 

  • Islam, M.T., Ryehan, S., Abdullah, F.A., Gmez-Aguilar, J.F.: The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik 287, 171140 (2023a). https://doi.org/10.1016/j.ijleo.2023.171140

    Article  ADS  Google Scholar 

  • Islam, M.T., Akter, M.A., Gomez-Aguilar, J.F., Akbar, M.A., Prez-Careta, E.: Innovative and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent techniques. J. Nonlinear Opt. Phys. Mater. (2023b). https://doi.org/10.1142/S0218863523500376

  • Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gmez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti–Leon–Manna–Pempinelli model. Phys. Scr. (2023c). https://doi.org/10.1088/1402-4896/ace743

  • lvarez, A., Cuevas, J., Romero, F.R., Hamner, C., Chang, J. J., Engels, P., Kevrekidis, P.G., Frantzeskakis, D.J.: Scattering of atomic dark–bright solitons from narrow impurities. J. Phys. B At. Mol. Opt. Phys. 46, 1-14 (2013)

  • Jin, F., Qian, Z.S., Chu, Y.M., ur Rahman, M.: On nonlinear evolution model for drinking behavior under Caputo–Fabrizio derivative. J. Appl. Anal. Comput. 12, 790–806 (2022)

    MathSciNet  Google Scholar 

  • Kevrekidis, P.G.: The Discrete Nonlinear Schrdinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives, vol. 232. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzlez, R.: The Defocusing Nonlinear Schrdinger Equation: From Dark Solitons to Vortices and Vortex Rings. Society for Industrial and Applied Mathematics (2015)

  • Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023a). https://doi.org/10.1016/j.chaos.2022.113098

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37, 2350083 (2023b). https://doi.org/10.1142/S0217979223500832

    Article  ADS  Google Scholar 

  • Khater, M.M.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023c). https://doi.org/10.1016/j.chaos.2023.113232

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.: Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37, 2350071 (2023d). https://doi.org/10.1142/S0217979223500716

    Article  ADS  Google Scholar 

  • Khater, M.M.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos Solitons Fractals 173, 113652 (2023e). https://doi.org/10.1016/j.chaos.2023.113652

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.: Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int. J. Mod. Phys. B 37, 2350052 (2023g). https://doi.org/10.1142/S0217979223500522

    Article  ADS  Google Scholar 

  • Khater, M.M.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37, 2350068 (2023h). https://doi.org/10.1142/S0217979223500686

    Article  ADS  Google Scholar 

  • Khater, M.M.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys. 44, 106193 (2023i)

    Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136, 1–28 (2021)

    Google Scholar 

  • Khater, M.M., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.: Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium. Results Phys. 46, 106312 (2023a)

    Google Scholar 

  • Khater, M.M., Zhang, X., Attia, R.A.: Accurate computational simulations of perturbed Chen–Lee–Liu equation. Results Phys. 45, 106227 (2023b)

    Google Scholar 

  • Kumar, D., Kaplan, M., Haque, M.R., Osman, M.S., Baleanu, D.: A variety of novel exact solutions for different models with the conformable derivative in shallow water. Front. Phys. 8, 177 (2020)

    Google Scholar 

  • Lazarevic, M.P., Rapaic, M.R., ekara, T.B., Mladenov, V., Mastorakis, N.: Introduction to fractional calculus with brief historical background. Advanced topics on applications of fractional calculus on control problems, system stability and modeling, 3-16 (2014)

  • Ma, W.X.: N-soliton solution of a combined pKP–BKP equation. J. Geom. Phys. 165, 104191 (2021)

    MathSciNet  MATH  Google Scholar 

  • Miah, M.M., Seadawy, A.R., Ali, H.S., Akbar, M.A.: Abundant closed form wave solutions to some nonlinear evolution equations in mathematical physics. J. Ocean Eng. Sci. 5, 269–278 (2020)

    Google Scholar 

  • Peter, O.J., Shaikh, A.S., Ibrahim, M.O., Nisar, K.S., Baleanu, D., Khan, I., Abioye, A.I.: Analysis and dynamics of fractional order mathematical model of COVID-19 in Nigeria using atangana-baleanu operator. Computers, Materials & Continua 66 1823-1848 (2021)

  • Rahman, N., Akbar, M.A.: Traveling waves solutions of nonlinear Klein Gordon equation by extended (G’/G)-expansion method. Ann. Pure Appl. Math. 3, 10–16 (2013)

    Google Scholar 

  • Rajan, M.M., Veni, S.S.: Nonautonomous three soliton interactions in an inhomogeneous optical fiber: application to soliton switching devices. Optik 272, 170317 (2023). https://doi.org/10.1016/j.ijleo.2022.170317

    Article  Google Scholar 

  • Rani, A., Zulfiqar, A., Ahmad, J., Hassan, Q.M.U.: New soliton wave structures of fractional Gilson-Pickering equation using tanh–coth method and their applications. Results Phys. 29, 104724 (2021)

    Google Scholar 

  • Rehman, S.U., Ahmad, J.: Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrdinger equation. Opt. Quantum Electron. 54, 640 (2022)

    Google Scholar 

  • Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrdinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98, 035216 (2023)

    Google Scholar 

  • Rogosin, S., Dubatovskaya, M.: Letnikov vs. Marchaud: a survey on two prominent constructions of fractional derivatives. Mathematics 6, 3 (2017)

    MATH  Google Scholar 

  • Saxena, H.: On literature and tools in fractional calculus and applications to mathematical modelling. Int. Res. J. Mod. Eng. Technol. Sci. 3(12), 1014–1019 (2021)

    Google Scholar 

  • Sekizawa, K.: TDHF theory and its extensions for the multinucleon transfer reaction: a mini review. Front. Phys. 7, 20 (2019)

    Google Scholar 

  • Silwal, S.: Solitary pulse solutions of a coupled nonlinear Schrodinger system arising in optics. 1-15 (2015). arXiv:1510.05274

  • Srivastava, H.M., Baleanu, D., Machado, J.A.T., Osman, M.S., Rezazadeh, H., Arshed, S., Günerhan, H.: Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Phys. Scr. 95, 075217 (2020)

    Google Scholar 

  • Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T., Atangana, A.: Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative. Adv. Differ. Equ. 2020, 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  • Tenreiro Machado, J.A.: The bouncing ball and the Grünwald–Letnikov definition of fractional derivative. Fract. Calc. Appl. Anal. 24, 1003–1014 (2021)

    MathSciNet  MATH  Google Scholar 

  • Ur-Rehman, S., Ahmad, J.: Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrdinger equation. Opt. Quantum Electron. 54, 640 (2022)

    Google Scholar 

  • Vouzas, P.: Extreme Waves in Dissipative Systems. Doctoral dissertation, The Australian National University (2020)

  • Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    MathSciNet  Google Scholar 

  • Yan, D., Chang, J.J., Hamner, C., Kevrekidis, P.G., Engels, P., Achilleos, V., Frantzeskakis, D.J., Carretero-Gonzalez, R., Schmelcher, P.: Multiple dark-bright solitons in atomic Bose–Einstein condensates. Phys. Rev. A 84, 053630 (2011)

    ADS  Google Scholar 

  • Yokus, A., Durur, H., Duran, S., Islam, M.T.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math. 41, 174 (2022)

    MathSciNet  MATH  Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Soliton solutions of fractional modified unstable Schrdinger equation using Exp-function method. Results Phys. 19, 103476 (2020a)

    Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Exact solitary wave solutions of fractional modified Camassa–Holm equation using an efficient method. Alex. Eng. J. 59, 3565–3574 (2020b)

    Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Computational solutions of fractional (2+ 1)-dimensional Ablowitz–Kaup–Newell–segur equation using an analytic method and application. Arab. J. Sci. Eng., 1-15 (2021)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JA: resources, acquisition, supervision, validation. ZM: conceptualization, methodology, writing—original draft, formal analysis, software.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Mustafa, Z. Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications. Opt Quant Electron 55, 1228 (2023). https://doi.org/10.1007/s11082-023-05534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05534-w

Keywords

Navigation