Skip to main content
Log in

Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, travelling wave solutions of a nonlinear system of fractional Schrödinger equations (FSEs) with conformable fractional derivatives are studied. We examine the fractional generalization of the Schrödinger equation, a topic of great importance in quantum physics, using the analytic approach known as the modified extended direct algebraic method. Our approach involves the use of a fractional complex transformation to produce nonlinear ordinary differential equations, which are then solved to reveal travelling wave solutions. The two- and three-dimensional graphs that provide visual representations of the system’s behaviour present a variety of wave profiles, including periodic, kink, anti-kink, shocks, lumps, and other soliton waves. The study sheds light on the dynamics of FSEs by revealing multiple families of travelling wave solutions and their complex relationships. These results provide insight into nonlinear fractional partial differential equations and a greater understanding of the dynamics of FSEs than previous attempts in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  • Abu Arqub, O.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. Int. J. Numer. Methods Heat Fluid Flow 30(11), 4711–4733 (2020)

    Google Scholar 

  • Ahmad, J.: Dynamics of optical and other soliton solutions in fiber Bragg gratings with Kerr law and stability analysis. Arab. J. Sci. Eng. 48(1), 803–819 (2023)

    Google Scholar 

  • Ahmad, J., Mustafa, Z., Turki, N.B., Shah, N.A.: Solitary wave structures for the stochastic Nizhnik-Novikov-Veselov system via modified generalized rational exponential function method. Res. Phys. 52, 106776 (2023a)

  • Ahmad, J., Akram, S., Rehman, S.U., Turki, N.B., Shah, N.A.: Description of soliton and lump solutions to M-truncated stochastic Biswas-Arshed model in optical communication. Res. Phys. 51, 106719 (2023b)

  • Akram, S., Ahmad, J., Alkarni, S., Shah, N.A.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg-Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023)

    Google Scholar 

  • Alabedalhadi, M.: Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations. Alex. Eng. J. 61(2), 1033–1044 (2022)

    Google Scholar 

  • Ali, A., Ahmad, J., Javed, S., Rehman, S.U.: Analysis of chaotic structures, bifurcation and soliton solutions to fractional Boussinesq model. Phys. Scr. 98, 075217 (2023)

    ADS  Google Scholar 

  • Al-Smadi, M., Arqub, O.A., Zeidan, D.: Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications. Chaos Solitons Fractals 146, 110891 (2021)

    MathSciNet  Google Scholar 

  • Atangana, A., Gomez-Aguilar, J.F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equ. 34(5), 1502–1523 (2018)

    MathSciNet  Google Scholar 

  • Bakkyaraj, T., Sahadevan, R.: Approximate analytical solution of two coupled time fractional nonlinear Schrödinger equations. Int. J. Appl. Comput. Math. 2(1), 113–135 (2016)

    MathSciNet  Google Scholar 

  • Bayrak, M.A., Demir, A.: A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 336, 215–230 (2018)

    MathSciNet  Google Scholar 

  • Eid, R., Muslih, S.I., Baleanu, D., Rabei, E.: On fractional Schrodinger equation in -dimensional fractional space. Nonlinear Anal. Real World Appl. 10(3), 1299–1304 (2009)

    MathSciNet  Google Scholar 

  • Esen, A.N., Bulut, F.H., Oruç, Ö.: A unified approach for the numerical solution of time fractional Burgers’ type equations. Eur. Phys. J. Plus 131(4), 116 (2016)

    Google Scholar 

  • Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    ADS  Google Scholar 

  • Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum Mechanics and Path Integrals. Courier Corporation, North Chelmsford (2010)

    Google Scholar 

  • Freihet, A., Hasan, S., Al-Smadi, M., Gaith, M., Momani, S.: Construction of fractional power series solutions to fractional stiff system using residual functions algorithm. Adv. Differ. Equ. 2019(1), 1–15 (2019)

    MathSciNet  Google Scholar 

  • Gaber, A., Ahmad, H.: Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov method. Facta Univ. Ser. Math. Inform. 35, 1439–1449 (2021)

    MathSciNet  Google Scholar 

  • Gomez-Aguilar, J.F., Baleanu, D.: Schrödinger equation involving fractional operators with non-singular kernel. J. Electromagn. Waves Appl. 31(7), 752–761 (2017)

    ADS  Google Scholar 

  • Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)

    MathSciNet  Google Scholar 

  • Kaplan, M., Bekir, A., Akbulut, A., Aksoy, E.: The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60(9–10), 1374–1383 (2015)

    Google Scholar 

  • Khan, H., Baleanu, D., Kumam, P., Al-Zaidy, J.F.: Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method. IEEE Access 7, 107523–107532 (2019a)

  • Khan, H., Barak, S., Kumam, P., Arif, M.: Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the \((G^{\prime }/G)\)-expansion method. Symmetry 11(4), 566 (2019b)

    ADS  Google Scholar 

  • Khan, H., Shah, R., Baleanu, D., Kumam, P., Arif, M.: Analytical solution of fractional-order hyperbolic telegraph equation, using natural transform decomposition method. Electronics 8(9), 1015 (2019c)

  • Khan, H., Shah, R., Kumam, P., Baleanu, D., Arif, M.: Laplace decomposition for solving nonlinear system of fractional order partial differential equations. Adv. Differ. Equ. 2020(1), 1–18 (2020)

    MathSciNet  Google Scholar 

  • Khan, H., Shah, R., Gomez-Aguilar, J.F., Baleanu, D., Kumam, P.: Travelling waves solution for fractional-order biological population model. Math. Model. Nat. Phenom. 16, 32 (2021)

    MathSciNet  Google Scholar 

  • Kumar, A., Chauhan, H.V.S., Ravichandran, C., Nisar, K.S., Baleanu, D.: Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. Adv. Differ. Equ. 2020(1), 1–14 (2020)

    MathSciNet  Google Scholar 

  • Kumar, S., Kumar, R., Osman, M.S., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021a)

    MathSciNet  Google Scholar 

  • Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ. 37(2), 1673–1692 (2021b)

    MathSciNet  Google Scholar 

  • Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    ADS  MathSciNet  Google Scholar 

  • Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056108 (2002)

    ADS  MathSciNet  Google Scholar 

  • Mathanaranjan, T.: An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity. Comput. Methods Differ. Equ. 10(3), 701–715 (2022)

    MathSciNet  Google Scholar 

  • Mathanaranjan, T.: Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 290, 171266 (2023a)

  • Mathanaranjan, T.: New Jacobi elliptic solutions and other solutions in optical metamaterials having higher-order dispersion and its stability analysis. Int. J. Appl. Comput. Math. 9(5), 66 (2023b)

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+ 1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(02), 2350016 (2023c)

  • Mathanaranjan, T., Vijayakumar, D.: New soliton solutions in nano-fibers with space-time fractional derivatives. Fractals 30(07), 2250141 (2022)

    ADS  Google Scholar 

  • Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quant. Electron. 54(5), 271 (2022)

    Google Scholar 

  • Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75(8), 085005 (2023)

    ADS  Google Scholar 

  • Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 49, 1746–1752 (2010)

    Google Scholar 

  • Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    ADS  MathSciNet  Google Scholar 

  • Özkan, E.M., Yildirim, O., Özkan, A.: On the exact solutions of optical perturbed fractional Schrödinger equation. Phys. Scr. 98(11), 115104 (2023a)

    ADS  Google Scholar 

  • Özkan, A., Özkan, E.M., Yildirim, O.: On exact solutions of some space-time fractional differential equations with M-truncated derivative. Fractal Fract. 7(3), 255 (2023b)

    Google Scholar 

  • Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216 (2023)

    ADS  Google Scholar 

  • Rehman, S.U., Bilal, M., Ahmad, J.: The study of solitary wave solutions to the time conformable Schrödinger system by a powerful computational technique. Opt. Quant. Electron. 54(4), 228 (2022)

    Google Scholar 

  • Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation. Alex. Eng. J. 79, 568–580 (2023)

    Google Scholar 

  • Sarikaya, M.Z., Budak, H., Usta, H.: On generalized the conformable fractional calculus. TWMS J. Appl. Eng. Math. 9(4), 792–799 (2019)

    Google Scholar 

  • Shafqat-ur-Rehman, Ahmad, J.: Stability analysis and novel optical pulses to Kundu-Mukherjee-Naskar model in birefringent fibers. Int. J. Mod. Phys. B 2450192 (2023). https://doi.org/10.1142/S0217979224501923

  • Shah, R., Khan, H., Arif, M., Kumam, P.: Application of Laplace-Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 21(4), 335 (2019a)

    ADS  MathSciNet  Google Scholar 

  • Shah, R., Khan, H., Kumam, P., Arif, M., Baleanu, D.: Natural transform decomposition method for solving fractional-order partial differential equations with proportional delay. Mathematics 7(6), 532 (2019b)

    Google Scholar 

  • Shah, N.A., Alyousef, H.A., El-Tantawy, S.A., Shah, R., Chung, J.D.: Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry 14(4), 739 (2022)

    ADS  Google Scholar 

  • Shaikh, A.S., Nisar, K.S.: Transmission dynamics of fractional order Typhoid fever model using Caputo-Fabrizio operator. Chaos Solitons Fractals 128, 355–365 (2019)

    ADS  MathSciNet  Google Scholar 

  • Shqair, M., Al-Smadi, M., Momani, S., El-Zahar, E.: Adaptation of conformable residual power series scheme in solving nonlinear fractional quantum mechanics problems. Appl. Sci. 10(3), 890 (2020)

    Google Scholar 

  • Tenreiro Machado, J.A.: The bouncing ball and the Grünwald-Letnikov definition of fractional derivative. Fract. Calc. Appl. Anal. 24(4), 1003–1014 (2021)

    MathSciNet  Google Scholar 

  • Tian, Y., Liu, J.: A modified exp-function method for fractional partial differential equations. Therm. Sci. 25, 1237–1241 (2021)

    Google Scholar 

  • Valliammal, N., Ravichandran, C.: Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. Nonlinear Stud. 25(1), 159–171 (2018)

    MathSciNet  Google Scholar 

  • Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35(5), 843–850 (2008)

    ADS  MathSciNet  Google Scholar 

  • Yasmin, H., Aljahdaly, N.H., Saeed, A.M., Shah, R.: Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique. Mathematics 11(12), 2686 (2023)

    Google Scholar 

  • Younis, M., Iftikhar, M.: Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct algebraic method. J. Comput. Methods Sci. Eng. 15(3), 359–365 (2015)

    MathSciNet  Google Scholar 

  • Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., Akinyemi, L., Inc, M.: New solitary wave solutions and stability analysis for the generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles. Res. Phys. 43, 106083 (2022)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the suggestions and comments provided by the four referees, which significantly improved the quality of the paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RA. Data curation: ZZ. Formal analysis: RA. Validation: HA. Writing—original draft: RA. Writing—review editing: HA.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Zhang, Z. & Ahmad, H. Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study. Opt Quant Electron 56, 838 (2024). https://doi.org/10.1007/s11082-024-06370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06370-2

Keywords

Navigation