Skip to main content
Log in

Optical Heisenberg Landau Lifshitz electromotive microscale

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we define electrical Heisenberg synthetic-solitonic Landau Lifshitz\(\mathcal {NLES}\) electromotive \(\phi (\Bbbk _{1}),\phi (\Bbbk _{2}),\phi (\Bbbk _{3})\) microscales. Then, we construct Heisenberg Landau Lifshitz \( \mathcal {NLES}\) electrical optimistic synthetic-solitonic \(\phi (\Bbbk _{1}),\phi (\Bbbk _{2}),\phi (\Bbbk _{3})\) density. Finally, we have electrical Heisenberg Landau Lifshitz synthetic-solitonic first type electric \(\phi (\Bbbk _{1}),\phi (\Bbbk _{2}),\phi (\Bbbk _{3})\) microscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Arfan, M., Ghaffar, A., Alkanhal, M.A., Khan, Y., Alqahtani, A.H., Ur Rehman, S.: Laguerre–Gaussian beam scattering by a perfect electromagnetic conductor (PEMC) sphere. Arab. J. Sci. Eng. 48(6), 8001–8009 (2023)

    Article  Google Scholar 

  • Babicheva, V.E., Evlyukhin, A.B.: Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays. Phys. Rev. B 99(19), 195444 (2019)

    Article  ADS  Google Scholar 

  • Cossali, G.E., Tonini, S.: An analytical model of heat and mass transfer from liquid drops with temperature dependence of gas thermo-physical properties. Int. J. Heat Mass Transf. 138, 1166–1177 (2019)

    Article  Google Scholar 

  • Crespo-Ballesteros, M., Sumetsky, M.: Controlled transportation of light by light at the microscale. Phys. Rev. Lett. 126(15), 153901 (2021)

    Article  ADS  Google Scholar 

  • Fröhlich, J., Hafemann, T.E., Jain, R.: Phase-resolving direct numerical simulations of particle transport in liquids–From microfluidics to sediment. GAMM-Mitteilungen 45(2), e202200016 (2022)

    Article  MathSciNet  Google Scholar 

  • Huang, W.T., Liu, F.F., Lü, X., Wang, J.P., Xu, H.T.: Dynamics and numerical simulation of optical pulses in the passively mode-locked Er-doped fiber laser. Commun. Nonlin. Sci. Numer. Simul. 114, 106658 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Illath, K., Kar, S., Gupta, P., Shinde, A., Wankhar, S., Tseng, F.G., Santra, T.S.: Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 280, 121247 (2022)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New version of optical spherical electric and magnetic flow phase with some fractional solutions in SH32. Optik 243, 167378 (2021a)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Timelike spherical magnetic SN flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021b)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021c)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021d)

    Article  ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T.: Optical normal antiferromagnetic electromotive microscale with optimistic density. Optik 261, 169019 (2022a)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Opt. Quantum Electron. 54(12), 826 (2022b)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical electromagnetic flux fibers with optical antiferromagnetic model. Optik 251, 168301 (2022c)

    Article  ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T.: Optical spherical electroosmotic phase and optical energy for spherical \(\alpha \)-magnetic fibers. Optik 255, 168455 (2022d)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quantum Electron. 55(6), 505 (2023a)

    Article  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic Schrö dinger electromotive microscale in Minkowski space. Opt. Quantum Electron. 55(8), 681 (2023b)

    Article  Google Scholar 

  • Körpinar, Z., Körpinar, T.: New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlin. Opt. Phys. Mater. 2350051 (2023c)

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame. Int. J. Geomet. Methods Mod. Phys. 2350163 (2023d)

  • Körpinar, T., Körpinar, Z.: Optical recursional binormal optical visco Landau–Lifshitz electromagnetic optical density. Commun. Theor. Phys. 75(5), 055003 (2023e)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New approach for hybrid electromagnetic phase of hybrid optical fibers. Waves Random Complex Media, 1–29 (2023f)

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere S2. Revista Mexicana de Física 65(6), 626–633 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space S12. Optik 226, 165872 (2021)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Electric flux fibers with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022a)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Yeneroğlu, M.: New optical total recursion for electromagnetic flux of optical fiber with optical microscale. Optik 264, 169373 (2022b)

    Article  ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical electromotive microscale with first type Schrödinger frame. Optik 276, 170629 (2023)

    Article  ADS  Google Scholar 

  • Lavrentovich, O.D.: Design of nematic liquid crystals to control microscale dynamics. Liq. Cryst. Rev. 8(2), 59–129 (2020)

    Article  Google Scholar 

  • Liu, D., Liu, C., Yuan, Y., Zhang, X., Huang, Y., Yan, S.: Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection. Anal. Chem. 93(30), 10672–10678 (2021)

    Article  Google Scholar 

  • Mazur, M., Suh, M.G., Fülöp, A., Schröder, J., Karlsson, M., Vahala, K., Andrekson, P.: High spectral efficiency coherent superchannel transmission with soliton microcombs. J. Lightw. Technol. 39(13), 4367–4373 (2021)

    Article  ADS  Google Scholar 

  • Moatimid, G.M., Amer, T.S.: Analytical approximate solutions of a magnetic spherical pendulum: Stability analysis. J. Vib. Eng. Technol. 11(5), 2155–2165 (2023)

    Article  Google Scholar 

  • Obiso, D., Schwitalla, D.H., Korobeinikov, I., Meyer, B., Reuter, M., Richter, A.: Dynamics of Rising Bubbles in a Quiescent Slag Bath with Varying Thermo-Physical Properties. Metall. Mater. Trans. B 51, 2843–2861 (2020)

    Article  Google Scholar 

  • Orosco, J., Connacher, W., Friend, J.: Identification of weakly to strongly-turbulent three-wave processes in a micro-scale system. Chaos Solitons Fractals 172, 113615 (2023)

    Article  MathSciNet  Google Scholar 

  • Pradhan, S.S., Saha, S.: Advances in design and applications of polymer brush modified anisotropic particles. Adv. Colloid Interface Sci. 300, 102580 (2022)

    Article  Google Scholar 

  • Romano, P., Imburgia, A., Ala, G.: Partial discharge detection using a spherical electromagnetic sensor. Sensors 19(5), 1014 (2019)

    Article  ADS  Google Scholar 

  • Sankad, G.C., Priyadarsini, G.D., El-Rahman, M.A., Gorji, M.R., Alsufi, N.A.: Microfluidics temperature compensation and tracking for drug injection based on mechanically pulsating heat exchanger. J. Thermal Anal. Calorim. 1–12 (2023)

  • Shi, L., Zhang, S., Arshad, A., Hu, Y., He, Y., Yan, Y.: Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network. Renew. Sustain. Energy Rev. 149, 111341 (2021)

    Article  Google Scholar 

  • Srivastava, T., Katari, N.K., Ravuri, B.R., Gundla, R., Mohan, S.K.: Influence of Filler Content on Thermo-Physical Properties of Hollow Glass Microsphere-Silicone Matrix Composite. Silicon 14(3), 1179–1189 (2022)

    Article  Google Scholar 

  • Wang, H., Chen, W., Zhao, W., Wu, H.: Numerical and experimental study on the optical performance of micro-pyramid functional surfaces. Microsyst. Technol. 27, 2671–2678 (2021)

    Article  Google Scholar 

  • Wang, J., Maier, S.A., Tittl, A.: Trends in Nanophotonics-Enabled Optofluidic Biosensors. Adv. Opt. Mater. 10(7), 2102366 (2022)

    Article  Google Scholar 

  • Zandi, S., Saxena, P., Gorji, N.E.: Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Solar Energy 197, 105–110 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Zeliha Körpinar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical Heisenberg Landau Lifshitz electromotive microscale. Opt Quant Electron 55, 1283 (2023). https://doi.org/10.1007/s11082-023-05525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05525-x

Keywords

Navigation