Skip to main content
Log in

Antiferromagnetic complex electromotive microscale with first type Schrödinger frame

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we define the first frame associated with the non-linear Schrödinger \((\mathcal{NLS)}\) system. Also, we present Lorentz force in the first type of the non-linear Schrödinger frame associated with the Bishop frame in the Minkowski 3-space. We can define timelike pseudo-solitonic first class \({\mathcal{NLS}}\) electromotive microscale. Hence, we design first class \({\mathcal{NLS}}\) optical optimistic pseudo-solitonic density. Moreover, we obtain electroosmotic solitonic \( {\mathcal{NLS}}\) electromotive microscale modeled by the first type of the non-linear Schrödinger frame vectors. It is shown that introduced \( \mathcal{NLS}\) electromotive methods present an impressive optical apparatus for modeling \({\mathcal{NLS}}\) optical optimistic pseudo-solitonic density in mathematical physics and geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Alazmi, S., Xu, Y., Daqaq, M.F.: Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: analytical modeling and experimental validation. Phys. Fluids 28, 077101 (2016)

    ADS  Google Scholar 

  • Almaas, E., Brevik, I.: Possible sorting mechanism for microparticles in an evanescent field. Phys. Rev. A 87, 063826 (2013)

    ADS  Google Scholar 

  • Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    ADS  Google Scholar 

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    ADS  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    ADS  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)

    MathSciNet  MATH  ADS  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)

    ADS  Google Scholar 

  • Bliokh, K.Y.: Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 11(9), 094009 (2009)

    ADS  Google Scholar 

  • Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989)

    ADS  Google Scholar 

  • Calini, A., Ivey, T.: Finite-gap solutions of the vortex filament equation genus one solutions and symmetric solutions. J. Nonlinear Sci. 15, 321–361 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  • Calini, A., Ivey, T., Marí Beffa, G.: Remarks on KdV-type flows on star-shaped curves. Physica D 238, 788–797 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  • Chaumet, P.C., Nieto-Vesperinas, M.: Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001)

    ADS  Google Scholar 

  • Chou, K.S., Qu, C.: The KdV equation and motion of plane curves. J. Phys. Soc. Japan 70(7), 1912–1916 (2001)

    MathSciNet  MATH  ADS  Google Scholar 

  • Chae, S.H., Ju, S., Choi, Y., Chi, Y.E., Ji, C.H.: Electromagnetic linear vibration energy harvester using sliding permanent magnet array and ferrofluid as a lubricant. Micromachines 8(10), 288 (2017)

    Google Scholar 

  • Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)

    ADS  Google Scholar 

  • Ding, Q., Inoguchi, J.I.: Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies. Chaos, Solitons Fractals 21(3), 669–677 (2004)

    MathSciNet  MATH  ADS  Google Scholar 

  • Doliwa, A., Santini, P.M.: An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A 185(4), 373–384 (1994)

    MathSciNet  MATH  ADS  Google Scholar 

  • Erdoğdu, M., Özdemir, M.: Geometry of Hasimoto surfaces in Minkowski 3-space. Math. Phys. Anal. Geom. 17(1–2), 169–181 (2014)

    MathSciNet  MATH  Google Scholar 

  • Geng, X., He, G., Wu, L.: Riemann theta function solutions of the Caudrey–Dodd–Gibbon–Sawada–Kotera hierarchy. J. Geom. Phys. 140, 85–103 (2019)

    MathSciNet  MATH  ADS  Google Scholar 

  • Gilmore, R.: Length and curvature in the geometry of thermodynamics. Phys. Rev. A 30(4), 1994 (1984)

    MathSciNet  ADS  Google Scholar 

  • Gu, J., Akbulut, A., Kaplan, M., Kaabar, M.K., Yue, X.G.: A novel investigation of exact solutions of the coupled nonlinear Schrodinger equations arising in ocean engineering, plasma waves, and nonlinear optics. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.014

  • Gürbüz, N.: Moving non-null curves according to Bishop frame in Minkowski 3-space. Int. J. Geometr. Methods Mod. Phys. 12(05), 1550052 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  • Gürbüz, N.E.: The evolution of electric field in pseudo-Galilean 3-space G13. Optik 269, 169818 (2022a)

    ADS  Google Scholar 

  • Gürbüz, N.E.: The null geometric phase along optical fiber for anholonomic coordinates. Optik 258, 168841 (2022b)

    ADS  Google Scholar 

  • Gürbüz, N.E.: The evolution of an electric field, Hasimoto surfaces and three differential formulas with the new frame in R13. Optik 272, 170217 (2023)

    ADS  Google Scholar 

  • Hosseini, K., Kumar, D., Kaplan, M., Bejarbaneh, E.Y.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 68(6), 761 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  • Inc, M., Korpinar, T., Korpinar, Z.: Spherical traveling wave hypothesis for geometric optical phase with speherical magnetic ferromagnetic system. Opt. Quant. Electron. 55(2), 1–18 (2023)

    Google Scholar 

  • Kaplan, M., Ünsal, Ö., Bekir, A.: Exact solutions of nonlinear Schrödinger equation by using symbolic computation. Math. Methods Appl. Sci. 39(8), 2093–2099 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  • Khairul, M.A., Doroodchi, E., Azizian, R., Moghtaderi, B.: Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers. Manag. 149, 660–674 (2017)

    Google Scholar 

  • Kim, D., Yun, K.-S.: Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field. J. Phys: Conf. Ser. 660, 012108 (2015)

    Google Scholar 

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    ADS  Google Scholar 

  • Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A different modelling of complex Hasimoto map for pseudo-null curves via Bishop frame. Complex Var. Ellip. Equ. 1–16 (2022). https://doi.org/10.1080/17476933.2022.2151005

  • Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021a)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021b)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Timelike spherical magnetic \({\mathbb{S} }_{{\textbf{N} }}\) flux flows with Heisenberg sphericalferromagnetic spin with some solutions. Optik 242, 166745 (2021c)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Optical spherical SS-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021d)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phasewith some fractional solutions in \( {\mathbb{S} }_{{\mathbb{H} }^{3}}^{2}\). Optik 243, 167378 (2021e)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: New optical flux for optical antiferromagnetic modified drift density. Opt. Quant. Electron. 54(12), 1–9 (2022a)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Opt. Quant. Electron. 54(12), 1–19 (2022b)

    Google Scholar 

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020a)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Revista Mexicana de Física 66(4), 431–439 (2020b)

    Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber. Optik 217, 164561 (2020c)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021a)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021b)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021c)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021d)

    ADS  Google Scholar 

  • Körpınar, T., Ünlütürk, Y., Körpınar, Z.: A new version of the motion equations of pseudo null curves with compatible Hasimoto map. Opt. Quant. Electron. 55(1), 1–14 (2023)

    Google Scholar 

  • Kumar, D., Hosseini, K., Kaabar, M.K., Kaplan, M., Salahshour, S.: On some novel solution solutions to the generalized Schrö dinger–Boussinesq equations for the interaction between complex short wave and real long wave envelope. J. Ocean Eng. Sci. 7(4), 353–362 (2022)

    Google Scholar 

  • Kuwahara, T., De Vuyst, F., Yamaguchi, H.: Flow regime classification in air-magnetic fluid two-phase flow. J. Phys.: Condens. Matter 20, 204141 (2008)

    ADS  Google Scholar 

  • Li, Y.Y., Qu, C.Z., Shu, S.C.: Integrable motions of curves in projective geometries. J. Geom. Phys. 60, 972–985 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  • Liu, Q., Alazemi, S.F., Daqaq, M.F., Li, G.: A ferrofluid based energy harvester: computational modeling, analysis, and experimental validation. J. Magn. Magn. Mater. 449, 105–118 (2018)

    ADS  Google Scholar 

  • Ma, W.X.: An extended Harry dym hierarchy. J. Phys. A Math. Theor. 43(16), 165202 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  • Marí Beffa, G.: Hamiltonian evolution of curves in classical affine geometries. Physica D 238, 100–115 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  • Marí Beffa, G., Olver, P.J.: Poisson structure for geometric curve flows in semi-simple homogeneous spaces. Regul. Chaotic Dyn. 15, 532–550 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  • Özdemir, M., Ergin, A.A.: Parallel frames of non-light like curves. Missouri J. Math. Sci. 20(2), 127–137 (2008)

    MATH  Google Scholar 

  • Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  • Ricca, R.L.: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36(4–6), 319 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  • Seol, M.-L., Jeon, S.-B., Han, J.-W., Choi, Y.-K.: Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017)

    Google Scholar 

  • Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7(05), 743–808 (1995)

    MathSciNet  MATH  Google Scholar 

  • Wang, Y., Zhang, Q., Zhao, L., Kim, E.: Ferrofluid liquid spring for vibration energy harvesting. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 122–125 (2015)

  • Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37(18), 3902–3911 (1998)

    ADS  Google Scholar 

  • Wo, W.F., Qu, C.Z.: Integrable motions of curves in S1 R. J. Geom. Phys. 57, 1733–1755 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Talat Körpinar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt Quant Electron 55, 505 (2023). https://doi.org/10.1007/s11082-023-04709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04709-9

Keywords

Navigation